Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Newly Isolated Enterococcus faecium BS13
Authors: Vandana Bali, Manab B. Bera, Parmjit S. Panesar
Abstract:
Microbial production of antimicrobials as biopreservatives is the major area of focus nowadays due to increased interest of consumers towards natural and safe preservation of ready to eat food products. The agro-industrial byproduct based medium and optimized process conditions can contribute in economical production of bacteriocins. Keeping this in view, the present investigation was carried out on agro-industrial byproducts utilization for the production of bacteriocin using Enterococcus faecium BS13 isolated from local fermented food. Different agro-industrial byproduct based carbon sources (whey, potato starch liquor, kinnow peel, deoiledrice bran and molasses), nitrogen sources (soya okra, pea pod and corn steep liquor), metal ions and surfactants were tested for optimal bacteriocin production. The effect of various process parameters such as pH, temperature, inoculum level, agitation and time were also tested on bacteriocin production. The optimized medium containing whey, supplemented with 4%corn steep liquor and polysorbate-80 displayed maximum bacteriocin activity with 2% inoculum, at pH 6.5, temperature 40oC under shaking conditions (100 rpm).
Keywords: Bacteriocin, biopreservation, corn steep liquor, Enterococcus faecium, waste utilization, whey.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092922
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761References:
[1] E. G. Altuntas, S. Cosansu, and K. Ayhan,"Some growth parameters and antimicrobial activity of a bacteriocin-producing strain Pediococcus acidilactici 13”, Int. J. Food Microbiol., vol. 141, pp. 28-31, 2010.
[2] A. Hurst, "Nisin”, Adv. Appl.Microbiol., vol. 27, pp. 85-123, 1981.
[3] R. S. Makkar, S. S. Cameotra, and I. M. Banat, "Advances in utilization of renewable substrates for biosurfactant production”, AMB Express,vol. 1, pp. 5-23, 2011.
[4] S. Abbasiliasi,R. N. Ramanan,T. A. T. Ibrahim,S. Mustafa,R. Mohamad,H. H. M. Daud,andA. B. Ariff,"Effect of medium composition and culture condition on the production of bacteriocin-like inhibitory substances (blis) by Lactobacillus paracasei la07, a strain isolated from BUDU”,Biotechnol.Biotechnol. Equip., DOI: 10.5504/bbeq.2011.0101, pp. 2652-2657, 2011.
[5] N. P. Guerra, M. L. Rua, and L. Pastrana, "Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey”, Int. J. Food Microbiol.,vol. 70(3), pp. 267-281, 2001.
[6] V. Bali,P. S. Panesar,andM. B. Bera,"Isolation, screening and evaluation of antimicrobial activity of potential bacteriocin producing Lactic acid bacteria isolate”,Microbiol. J., vol. 1, pp. 113-119, 2011.
[7] V. Bali,P. S. Panesar,andM. B. Bera,"Physiological, biochemical and molecular characterization of potential bacteriocin producer strain isolated from fermented berseem”,Acta Aliment.,DOI 10.1556/AAlim.2013.0001, Online published, 2013.
[8] S. F. Barefoot, and T. R. Klaenhammer, "Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus”, Appl. Environ.Microbiol., vol. 45, pp. 1808-1815, 1983.
[9] F. Cladera-Olivera, G. R. Caron, and A. Brandelli, "Bacteriocin-like substance production by Bacillus licheniformis strain P40”, Lett. Appl. Microbiol., vol. 38, pp. 251-256, 2004.
[10] E. H. Drosinos, M. Mataragas, P. Nasis, M. Galiotou, and J. Metaxopoulos, "Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131”, J. Appl.Microbiol., vol. 99, pp. 1314-1323, 2005.
[11] F. L. Leaes, N. G. Vanin, V. Sant’Anna, and A. Brandelli, "Use of byproducts of food industry for production of antimicrobial activity by Bacillus sp. P11”, Food Bioprocess Tech., vol. 4, pp. 822-828, 2011.
[12] V. W. Johnson, M. Singh, V. S. Saini, D. K. Adhikari, V. Sista, and N. K. Yadav, "Utilization of molasses for the production of fat by an oleaginous yeast, Rhodotorulaglutinis IIP-30”, J. Ind.Microbiol., vol. 14(1), pp. 1-4, 1995.
[13] S. D. Todorov, C. A. van Reenen, and L. M. Dicks, "Optimization of bacteriocin production by Lactobacillus plantarum ST13BR, a strain isolated from barley beer”, J. Gen. Appl.Microbiol., vol. 50(3), pp. 149-157, 2004.
[14] S. D. Todorov, and L.M.T. Dicks, "Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives”, J. Basic Microbiol., vol. 45, pp. 312-322, 2005.
[15] J. Hemavathy, and J. V. Prabhakar, "Lipid composition of rice (Oryza sativa L) bran”, J. Am. Oil Chem. Soc., vol. 64(7), pp. 1016-1019, 1987.
[16] M. Metsoviti, S. Paramithiotis, E. H. Drosinos, P. N. Skandamis, M. Galiotou-Panayotou, and S. Papanikolaou, "Biotechnological valorization of low-cost sugar-based media for bacteriocin production by Leuconostoc mesenteroides E131”, N.Biotechnol., vol. 28(6), pp. 600-609,2011.
[17] T. L. J. Verellen, G. Bruggeman, C. A. Van Reenen, L. M. T. Dicks, and E. J. Vandamme, "Fermentation optimisation of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum423”, J. Ferment. Bioengineer., vol. 86, pp. 174-179, 1998.
[18] J. C. Coetzee, S. D. Todorov, J. F. Gorgens, and L. M. Dicks, "Increased production of bacteriocin ST4SA by Enterococcus mundtiiST4SA in modified corn steep liquor”, Ann.Microbiol., vol. 57(4), pp. 617-622, 2007.
[19] P. Neysens, W. Messens, and L. De Vuyst, "Effect of sodium chloride on growth and bacteriocin production by Lactobacillus amylovorus DCE 471”, Int. J. Food Microbiol., vol. 88, pp. 29-39, 2003.
[20] M. H. Kim, Y. J. Kong, H. Baek, and H. H. Hyun, "Optimization of culture conditions and medium composition for the production of micrococcin GO5 by Micrococcus sp. GO5”, J.Biotechnol., vol. 121(1), pp. 54-61, 2006.
[21] K. I. Garver, and P. M. Muriana, "Purification and partial amino acid sequence of curvaticin FS47, a heat-stable bacteriocin produced by Lactobacillus curvatus FS47”, Appl. Environ.Microbiol.,vol. 60, pp. 2191-2195, 1994.
[22] C. M. A. P. Franz, U. Schillinger, and W. H. Holzapfel, "Production and characterization of enterocin 900, a bacteriocin produced by Enterocuccus faecium BFE 900 from black olives”, Food Microbiol., vol. 29, pp. 255-270, 1996.
[23] H. Matsusaki, N. Endo, K. Sonomoto, and A. Ishizaki, "Lantibioticnisin Z fermentative production by Lactococcuslactis IO-1 relationaship between production of the lantibiotic and lactate and cell growth”, Appl. Microbiol.Biotechnol.,vol. 45, pp. 36-40, 1996.
[24] I. M. Aesen, T. Moretro, T. Katla, L. Axelsson, and L. Storro, "Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobaillus sakai CCUG 42687”, Appl.Microbiol.Biotechnol., vol. 53, pp. 159-166, 2000.
[25] M. Zamfir, R. Callewaert, P. C. Cornea, and L. De Vuyst, "Production kinetics of acidophilin 801, a bacteriocin produced by Lactobacillus acidophilus IBB 801”, FEMS Microbiol.Lett.,vol. 190, pp. 305-308, 2000.
[26] R. Yang, M. C. Johnson, and B. Ray, "Novel methods to extract large amount of bacteriocins from lactic acid bacteria”, Appl. Environ. Microbiol.,vol. 58(10), pp. 3355-3359, 1992.
[27] X. Liu, Y. K. Chung, S. Yang, and A. E. Yousef, "Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis”, Process Biochem., vol. 40(1), pp. 13-24, 2005.
[28] C. Cheigh, H. Choi, H. Park, S. Kim, M. Kook, T. Kim,J. Hwang, andY. Pyun, "Influence of growthconditions on the production of a nisin like bacteriocin by Lactococcuslactis subsp. lactis A164 isolated from kimchi”, J. Biotechnol., vol. 95,pp. 225-235, 2002.
[29] A. Sabu, A. Pandey, M. JaafarDaud, and G. Szakacs, "Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillusniger ATCC 16620”, Bioresour. Technol., vol. 96(11), pp. 1223-1228, 2005.
[30] H. Patel, A. Gupte, and S. Gupte, "Effect of different culture conditions and inducers on production of laccase by a basidiomycete fungal isolate Pleurotus ostreatus HP-1 under solid state fermentation”, BioResources, vol. 4(1), pp. 268-284, 2009.
[31] A. A. Sepahy, and L. Jabalameli, "Effect of culture conditions on the production of an extracellular protease by Bacillus sp. isolated from soil sample of Lavizan Jungle Park”, Enzyme Res., Article ID 219628,doi:10.4061/2011/219628, 2011.
[32] L. A. Purwanto, D. Ibrahim, and H. Sudrajat, "Effect of agitation speed on morphological changes in Aspergillusniger hyphae during production of tannase”, World J. Chem., vol. 4, pp. 34-38, 2009.
[33] M. Fenice, P. Barghini, L. Selbmann, and F. Federici, "Combined effects of agitation and aeration on the chitinolytic enzymes production by the Antarctic fungus Lecanicilliummuscarium CCFEE 5003”, Microb. Cell Fact., vol. 11(1), pp. 12, 2012.
[34] D. Jain, V. S. Meena, S. Kaushik, A. Kamble, Y. Chisti, and U. C. Banerjee, "Production of nitrilase by a recombinant Escherichia coli in a laboratory scale bioreactor”, Ferment. Technol., vol. 1, pp. 103, 2012.
[35] V. Bali, P. S. Panesar, and M. B. Bera, "Effect of bacteriocin extracted from Enterococcus faecium BS 13 on shelf life of paneer and khoya”, Int. J. Food Nutr. Sci., vol. 2, no. 1, pp. 5-11, 2013.