Search results for: fake health news classification model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9305

Search results for: fake health news classification model.

8525 An Adverse Model for Price Discrimination in the Case of Monopoly

Authors: Daniela Elena Marinescu, Ioana Manafi, Dumitru Marin

Abstract:

We consider a Principal-Agent model with the Principal being a seller who does not know perfectly how much the buyer (the Agent) is willing to pay for the good. The buyer-s preferences are hence his private information. The model corresponds to the nonlinear pricing problem of Maskin and Riley. We assume there are three types of Agents. The model is solved using “informational rents" as variables. In the last section we present the main characteristics of the optimal contracts in asymmetric information and some possible extensions of the model.

Keywords: Adverse selection, asymmetric information, informational rent, nonlinear pricing, optimal contract

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
8524 A Convenient Model for I-V Characteristic of a Solar Cell Generator as an Active Two-Pole with Self-Limitation of Current

Authors: A. A. Penin, A. S. Sidorenko

Abstract:

A convenient and physically sound mathematical model of the external or I - V characteristic of solar cells generators is presented in this paper. This model is compared with the traditional model of p-n junction. The direct analytical calculation of load regime leads to a quadratic equation, which is importantly to simplify the calculations in the real time.

Keywords: A solar cell generator, I−V characteristic, activetwo-pole.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
8523 Analytical Model for Predicting Whole Building Heat Transfer

Authors: Xiaoshu Lu, Martti Viljanen

Abstract:

A new analytical model is developed which provides close-formed solutions for both transient indoor and envelope temperature changes in buildings. Time-dependent boundary temperature is presented as Fourier series which can approximate real weather conditions. The final close-formed solutions are simple, concise, and comprehensive. The model was compared with numerical results and good accuracy was obtained. The model can be used as design and control guidelines in engineering applications for analysing mechanical heat transfer properties for buildings.

Keywords: Analytical model, heat transfer, whole building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
8522 Clinical Decision Support for Disease Classification based on the Tests Association

Authors: Sung Ho Ha, Seong Hyeon Joo, Eun Kyung Kwon

Abstract:

Until recently, researchers have developed various tools and methodologies for effective clinical decision-making. Among those decisions, chest pain diseases have been one of important diagnostic issues especially in an emergency department. To improve the ability of physicians in diagnosis, many researchers have developed diagnosis intelligence by using machine learning and data mining. However, most of the conventional methodologies have been generally based on a single classifier for disease classification and prediction, which shows moderate performance. This study utilizes an ensemble strategy to combine multiple different classifiers to help physicians diagnose chest pain diseases more accurately than ever. Specifically the ensemble strategy is applied by using the integration of decision trees, neural networks, and support vector machines. The ensemble models are applied to real-world emergency data. This study shows that the performance of the ensemble models is superior to each of single classifiers.

Keywords: Diagnosis intelligence, ensemble approach, data mining, emergency department

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
8521 A Learning-Community Recommendation Approach for Web-Based Cooperative Learning

Authors: Jian-Wei Li, Yao-Tien Wang, Yi-Chun Chang

Abstract:

Cooperative learning has been defined as learners working together as a team to solve a problem to complete a task or to accomplish a common goal, which emphasizes the importance of interactions among members to promote the whole learning performance. With the popularity of society networks, cooperative learning is no longer limited to traditional classroom teaching activities. Since society networks facilitate to organize online learners, to establish common shared visions, and to advance learning interaction, the online community and online learning community have triggered the establishment of web-based societies. Numerous research literatures have indicated that the collaborative learning community is a critical issue to enhance learning performance. Hence, this paper proposes a learning community recommendation approach to facilitate that a learner joins the appropriate learning communities, which is based on k-nearest neighbor (kNN) classification. To demonstrate the viability of the proposed approach, the proposed approach is implemented for 117 students to recommend learning communities. The experimental results indicate that the proposed approach can effectively recommend appropriate learning communities for learners.

Keywords: k-nearest neighbor classification, learning community, Cooperative/Collaborative Learning and Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
8520 Supply Chain Modeling and Improving Manufacturing Industry in Developing Countries: A Research Agenda

Authors: F.B. Georgise, K. D. Thoben, M. Seifert

Abstract:

This paper presents a research agenda on the SCOR model adaptation. SCOR model is designated to measure supply chain performance and logistics impact across the boundaries of individual organizations. It is at its growing stage of its life cycle and is enjoying the leverage of becoming the industry standard. The SCOR model has been developed and used widely in developed countries context. This research focuses on the SCOR model adaptation for the manufacturing industry in developing countries. With a necessary understanding of the characteristics, difficulties and problems of the manufacturing industry in developing countries- supply chain; consequently, we will try to designs an adapted model with its building blocks: business process model, performance measures and best practices.

Keywords: developing countries, manufacturing industry, SCOR model adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
8519 Development of Logic Model for R&D Program Plan Analysis in Preliminary Feasibility Study

Authors: Hyun-Kyu Kang

Abstract:

The Korean Government has applied the preliminary feasibility study to new government R&D program plans as a part of an evaluation system for R&D programs. The preliminary feasibility study for the R&D program is composed of 3 major criteria such as technological, policy and economic analysis. The program logic model approach is used as a part of the technological analysis in the preliminary feasibility study. We has developed and improved the R&D program logic model. The logic model is a very useful tool for evaluating R&D program plans. Using a logic model, we can generally identify important factors of the R&D program plan, analyze its logic flow and find the disconnection or jump in the logic flow among components of the logic model.

Keywords: Preliminary feasibility study, R&D program logic model, technological analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
8518 An Improved Model for Prediction of the Effective Thermal Conductivity of Nanofluids

Authors: K. Abbaspoursani, M. Allahyari, M. Rahmani

Abstract:

Thermal conductivity is an important characteristic of a nanofluid in laminar flow heat transfer. This paper presents an improved model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions and particle size. The proposed model includes a parameter which accounts for the interfacial shell, brownian motion, and aggregation of particle. The validation of the model is verified by applying the results obtained by the experiments of Tio2-water and Al2o3-water nanofluids.

Keywords: Critical particle size, nanofluid, model, and thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
8517 A Real-Time Specific Weed Recognition System Using Statistical Methods

Authors: Imran Ahmed, Muhammad Islam, Syed Inayat Ali Shah, Awais Adnan

Abstract:

The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic system is developed to identify and locate outdoor plants using machine vision technology and pattern recognition. The algorithm is developed to classify images into broad and narrow class for real-time selective herbicide application. The developed algorithm has been tested on weeds at various locations, which have shown that the algorithm to be very effectiveness in weed identification. Further the results show a very reliable performance on weeds under varying field conditions. The analysis of the results shows over 90 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Keywords: Weed detection, Image Processing, real-timerecognition, Standard Deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
8516 Risk Monitoring through Traceability Information Model

Authors: Juan P. Zamora, Wilson Adarme, Laura Palacios

Abstract:

This paper shows a traceability framework for supply risk monitoring, beginning with the identification, analysis, and evaluation of the supply chain risk and focusing on the supply operations of the Health Care Institutions with oncology services in Bogota, Colombia. It includes a brief presentation of the state of the art of the Supply Chain Risk Management and traceability systems in logistics operations, and it concludes with the methodology to integrate the SCRM model with the traceability system.

Keywords: Supply risk, risk monitoring, supply chain risk management, cancer drugs, traceability systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
8515 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
8514 Authentication Analysis of the 802.11i Protocol

Authors: Zeeshan Furqan, Shahabuddin Muhammad, Ratan Guha

Abstract:

IEEE has designed 802.11i protocol to address the security issues in wireless local area networks. Formal analysis is important to ensure that the protocols work properly without having to resort to tedious testing and debugging which can only show the presence of errors, never their absence. In this paper, we present the formal verification of an abstract protocol model of 802.11i. We translate the 802.11i protocol into the Strand Space Model and then prove the authentication property of the resulting model using the Strand Space formalism. The intruder in our model is imbued with powerful capabilities and repercussions to possible attacks are evaluated. Our analysis proves that the authentication of 802.11i is not compromised in the presented model. We further demonstrate how changes in our model will yield a successful man-in-the-middle attack.

Keywords: authentication, formal analysis, formal verification, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
8513 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis

Authors: Carlos Huertas, Reyes Juarez-Ramirez

Abstract:

Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.

Keywords: Feature selection, mass spectrometry, biomarker discovery, cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
8512 Artificial Intelligence Techniques Applications for Power Disturbances Classification

Authors: K.Manimala, Dr.K.Selvi, R.Ahila

Abstract:

Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.

Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
8511 Learning the Dynamics of Articulated Tracked Vehicles

Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri

Abstract:

In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.

Keywords: Dirichlet processes, Gaussian processes, robot control learning, tracked vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
8510 On Methodologies for Analysing Sickness Absence Data: An Insight into a New Method

Authors: Xiaoshu Lu, Päivi Leino-Arjas, Kustaa Piha, Akseli Aittomäki, Peppiina Saastamoinen, Ossi Rahkonen, Eero Lahelma

Abstract:

Sickness absence represents a major economic and social issue. Analysis of sick leave data is a recurrent challenge to analysts because of the complexity of the data structure which is often time dependent, highly skewed and clumped at zero. Ignoring these features to make statistical inference is likely to be inefficient and misguided. Traditional approaches do not address these problems. In this study, we discuss model methodologies in terms of statistical techniques for addressing the difficulties with sick leave data. We also introduce and demonstrate a new method by performing a longitudinal assessment of long-term absenteeism using a large registration dataset as a working example available from the Helsinki Health Study for municipal employees from Finland during the period of 1990-1999. We present a comparative study on model selection and a critical analysis of the temporal trends, the occurrence and degree of long-term sickness absences among municipal employees. The strengths of this working example include the large sample size over a long follow-up period providing strong evidence in supporting of the new model. Our main goal is to propose a way to select an appropriate model and to introduce a new methodology for analysing sickness absence data as well as to demonstrate model applicability to complicated longitudinal data.

Keywords: Sickness absence, longitudinal data, methodologies, mix-distribution model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
8509 Building an e-Learning System Model with Implications for Research and Instructional Use

Authors: Kuan-Chou Chen, Keh-Wen “Carin” Chuang

Abstract:

This paper demonstrates a model of an e-Learning system based on nowadays learning theory and distant education practice. The relationships in the model are designed to be simple and functional and do not necessarily represent any particular e- Learning environments. It is meant to be a generic e-Learning system model with implications for any distant education course instructional design. It allows online instructors to move away from the discrepancy between the courses and body of knowledge. The interrelationships of four primary sectors that are at the e-Learning system are presented in this paper. This integrated model includes [1] pedagogy, [2] technology, [3] teaching, and [4] learning. There are interactions within each of these sectors depicted by system loop map.

Keywords: e-Learning system, online courses instructionaldesign, integrated model, interrelationships.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
8508 Forecasting for Financial Stock Returns Using a Quantile Function Model

Authors: Yuzhi Cai

Abstract:

In this talk, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.

Keywords: DJIA, Financial returns, predictive distribution, quantile function model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
8507 A Simulation Model for the H-gate PDSOI MOSFET

Authors: Bu Jianhui, Bi Jinshun, Liu Mengxin, Luo Jiajun, Han Zhengsheng

Abstract:

The floating body effect is a serious problem for the PDSOI MOSFET, and the H-gate layout is frequently used as the body contact to eliminate this effect. Unfortunately, most of the standard commercial SOI MOSFET model is for the device with finger gate, the necessity of the new models for the H-gate device arises. A simulation model for the H-gate PDSOI MOSFET is proposed based on the 0.35μm PDSOI process developed by the Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS), and then the model is well verified by the ring-oscillator.

Keywords: PDSOI H-gate Device model Body contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
8506 Drag models for Simulation Gas-Solid Flow in the Bubbling Fluidized Bed of FCC Particles

Authors: S. Benzarti, H. Mhiri, H. Bournot

Abstract:

In the current work, a numerical parametric study was performed in order to model the fluid mechanics in the riser of a bubbling fluidized bed (BFB). The gas-solid flow was simulated by mean of a multi-fluid Eulerian model incorporating the kinetic theory for solid particles. The bubbling fluidized bed was simulated two dimensionally by mean of a Computational Fluid Dynamic (CFD) commercial software package, Fluent. The effects of using different inter-phase drag function (the drag model of Gidaspow, Syamlal and O-Brien and the EMMS drag model) on the model predictions were evaluated and compared. The results showed that the drag models of Gidaspow and Syamlal and O-Brien overestimated the drag force for the FCC particles and predicted a greater bed expansion in comparison to the EMMS drag model.

Keywords: Bubbling fluidized bed, CFD, drag model, EMMS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6738
8505 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: Complementary and alternative medicine, Iridology, iris, feature extraction, classification, disease prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
8504 Prediction of Cardiovascular Disease by Applying Feature Extraction

Authors: Nebi Gedik

Abstract:

Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.

Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132
8503 Moving Beyond the Limits of Disability Inclusion: Using the Concept of Belonging Through Friendship to Improve the Outcome of the Social Model of Disability

Authors: Luke S. Carlos A. Thompson

Abstract:

The medical model of disability, though beneficial for the medical professional, is often exclusionary, restrictive and dehumanizing when applied to the lived experience of disability. As a result, a critique of this model was constructed called the social model of disability. Much of the language used to articulate the purpose behind the social model of disability can be summed up within the word inclusion. However, this essay asserts that inclusiveness is an incomplete aspiration. The social model, as it currently stands, does not aid in creating a society where those with impairments actually belong. Rather, the social model aids in lessening the visibility, or negative consequence of, difference. Therefore, the social model does not invite society to welcome those with physical and intellectual impairments. It simply aids society in ignoring the existence of impairment by removing explicit forms of exclusion. Rather than simple inclusion, then, this essay uses John Swinton’s concept of friendship and Jean Vanier’s understanding of belonging to better articulate the intended outcome of the social model—a society where everyone can belong.

Keywords: Belong, community, disability, exclusion, friendship, inclusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
8502 Protein Graph Partitioning by Mutually Maximization of cycle-distributions

Authors: Frank Emmert Streib

Abstract:

The classification of the protein structure is commonly not performed for the whole protein but for structural domains, i.e., compact functional units preserved during evolution. Hence, a first step to a protein structure classification is the separation of the protein into its domains. We approach the problem of protein domain identification by proposing a novel graph theoretical algorithm. We represent the protein structure as an undirected, unweighted and unlabeled graph which nodes correspond the secondary structure elements of the protein. This graph is call the protein graph. The domains are then identified as partitions of the graph corresponding to vertices sets obtained by the maximization of an objective function, which mutually maximizes the cycle distributions found in the partitions of the graph. Our algorithm does not utilize any other kind of information besides the cycle-distribution to find the partitions. If a partition is found, the algorithm is iteratively applied to each of the resulting subgraphs. As stop criterion, we calculate numerically a significance level which indicates the stability of the predicted partition against a random rewiring of the protein graph. Hence, our algorithm terminates automatically its iterative application. We present results for one and two domain proteins and compare our results with the manually assigned domains by the SCOP database and differences are discussed.

Keywords: Graph partitioning, unweighted graph, protein domains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
8501 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Authors: Guy Leshem, Ya'acov Ritov

Abstract:

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3908
8500 Numerical Modeling of the Depth-Averaged Flow Over a Hill

Authors: Anna Avramenko, Heikki Haario

Abstract:

This paper reports the development and application of a 2D1 depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. κ − ε and 2D LES turbulence models were consider in this article. 2D CFD2 simulations for one hill was done to check the depth-averaged model in practise.

Keywords: Depth-averaged equations, numerical modeling, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
8499 Modeling and Simulation of a Serial Production Line with Constant Work-In-Process

Authors: Mehmet Savsar

Abstract:

This paper presents a model for an unreliable production line, which is operated according to demand with constant work-in-process (CONWIP). A simulation model is developed based on the discrete model and several case problems are analyzed using the model. The model is utilized to optimize storage space capacities at intermediate stages and the number of kanbans at the last stage, which is used to trigger the production at the first stage. Furthermore, effects of several line parameters on production rate are analyzed using design of experiments.

Keywords: Production line simulator, Push-pull system, JIT system, Constant WIP, Machine failures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
8498 Measuring the Comprehensibility of a UML-B Model and a B Model

Authors: Rozilawati Razali, Paul W. Garratt

Abstract:

Software maintenance, which involves making enhancements, modifications and corrections to existing software systems, consumes more than half of developer time. Specification comprehensibility plays an important role in software maintenance as it permits the understanding of the system properties more easily and quickly. The use of formal notation such as B increases a specification-s precision and consistency. However, the notation is regarded as being difficult to comprehend. Semi-formal notation such as the Unified Modelling Language (UML) is perceived as more accessible but it lacks formality. Perhaps by combining both notations could produce a specification that is not only accurate and consistent but also accessible to users. This paper presents an experiment conducted on a model that integrates the use of both UML and B notations, namely UML-B, versus a B model alone. The objective of the experiment was to evaluate the comprehensibility of a UML-B model compared to a traditional B model. The measurement used in the experiment focused on the efficiency in performing the comprehension tasks. The experiment employed a cross-over design and was conducted on forty-one subjects, including undergraduate and masters students. The results show that the notation used in the UML-B model is more comprehensible than the B model.

Keywords: Model comprehensibility, formal and semi-formal notation, empirical assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
8497 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightlydistressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the one-stage model has the lower misclassification error rate than the two-stage model. The one-stage model is more accurate than the two-stage model.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679
8496 Analysis of Spamming Threats and Some Possible Solutions for Online Social Networking Sites (OSNS)

Authors: Dilip Singh Sisodia, Shrish Verma

Abstract:

In this paper we are presenting some spamming techniques their behaviour and possible solutions. We have analyzed how Spammers enters into online social networking sites (OSNSs) to target them and diverse techniques used by them for this purpose. Spamming is very common issue in present era of Internet especially through Online Social Networking Sites (like Facebook, Twitter, and Google+ etc.). Spam messages keep wasting Internet bandwidth and the storage space of servers. On social networking sites; spammers often disguise themselves by creating fake accounts and hijacking user’s accounts for personal gains. They behave like normal user and they continue to change their spamming strategy. Following spamming techniques are discussed in this paper like clickjacking, social engineered attacks, cross site scripting, URL shortening, and drive by download. We have used elgg framework for demonstration of some of spamming threats and respective implementation of solutions.

Keywords: Online social networking sites, spam attacks, Internet, clickjacking/likejacking, drive-by-download, URL shortening, cross site scripting, socially engineered attacks, elgg framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358