Search results for: Solid oxide fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2224

Search results for: Solid oxide fuel cell

1444 Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil

Authors: Maryam Meftahi, Yashar Hamidzadeh

Abstract:

In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly.

Keywords: Silty soil, waste plastic, compaction, consolidation, reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
1443 Effect of Aging Treatment on Mechanical Properties of Non-Flammable AZ91D Mg Alloy

Authors: Ju Hyun Won, Hyun Woo Lee, Seok Hong Min, Tae Kwon Ha

Abstract:

Microstructure and mechanical properties of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were investigated in this study. Solid solution treatment of AZ91D Mg alloy with Ca and Y was successfully conducted at 420oC and supersaturated microstructure with almost all beta phases resolved into matrix was obtained. After solid solution treatment, the alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced from the results as at the temperature of 200oC for 10 hrs. Hot rolling was also carried out at 400oC by the reduction ratio of 0.6 through 5 passes followed by recrystallization treatment. Tensile and compressive properties were measured at room temperature on the specimens of each process, i.e. as-cast, solution treatment, hot rolling, and recrystallization.

Keywords: Mg alloy, AZ91D, nonflammable alloy, hot rolling, peak aging, tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
1442 Non-Melanoma Skin Cancer in Ha’il Region in the Kingdom of Saudi Arabia: A Clinicopathological Study

Authors: Laila Seada, Nouf Al Gharbi, Shaimaa Dawa

Abstract:

Although skin cancers are prevalent worldwide, it is uncommon in Ha’il region in the Kingdom of Saudi Arabia, mostly non-melanoma sub-type. During a 4-year period from 2014 to 2017, out of a total of 120 cases of skin lesions, 29 non-melanoma cancers were retrieved from histopathology files obtained from King Khalid Hospital. As part of the study, all cases of skin cancer diagnosed during 2014 -2017 have been revised and the clinicopathological data recorded. The results show that Basal cell carcinoma (BCC) was the most common neoplasm (36%), followed by cutaneous lymphomas (mostly mycosis fungoides 25%), squamous cell carcinoma (SCC) (21%) and dermatofibrosarcoma protuberans (DFSP) (11%). Only one case of metastatic carcinoma was recorded. BCC nodular type was the most prevalent, with a mean age 57.6 years and mean size 2.73 cm. SCC was mostly grade 2, with mean size 1.9 cm and an older mean age of 72.3 cm. Increased size of lesion positively correlated with older age (p = 0.001). Non-melanoma skin cancer in Ha’il region is not frequently encountered. BCC is the most frequent followed by cutaneous T-cell lymphomas and SCC. The findings in this study were in accordance with other parts of, but much lower than other parts of the world.

Keywords: Non melanoma skin cancer, Hail Region, histopathology, BCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
1441 Pig Husbandry and Solid Manures in a Commercial Pig Farm in Beijing, China

Authors: Roxana Mendoza Huaitalla, Eva Gallmann, Kun Zheng, Xuejun Liu, Eberhard Hartung

Abstract:

Porcine production in China represents approximately the 50% of the worldwide pig production. Information about pig husbandry characteristics in China and manure properties from sows to fatteners in intensive pig farms are not broadly available for scientific studies as it is a time consuming, expensive task and highly inaccessible. This study provides a report about solid pig manures (28% dry matter) in a commercial pig farm located in the peri-urban area of Beijing as well as a general overview of the current pig husbandry techniques including pig breeds, feeds, diseases, housing as well as pig manure and wastewater disposal. The main results are intended to serve as a literature source for young scientists in order to understand the main composition of pig manures as well as to identify the husbandry techniques applied in an intensive pig farm in Beijing.

Keywords: China, heavy metals, intensive pig farming, manure, nutrients, pig growing stages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
1440 Cold Model Experimental Research on Particle Velocity Distribution in Gas-Solid Circulating Fluidized Bed for Methanol-to-Olefins Process

Authors: Yongzheng Li, Hongfang Ma, Qiwen Sun, Haitao Zhang, Weiyong Ying

Abstract:

Radial profiles of particle velocities were investigated in a 6.1m high methanol-to-olefins cold model experimental device using a TSI laser Doppler velocimeter. The effect of axial height on flow development was not obvious in fully developed region under the same operating condition. Superficial gas velocity and solid circulating rate had significant influence on particle velocity in the center region of the riser. Besides, comparisons among rising, descending and average particle velocity were conducted. The particle average velocity was similar to the rising particle velocity and higher than the descending particle velocity in radial locations except the wall region of riser.

Keywords: Circulating fluidized bed, laser doppler velocimeter, particle velocity, radial profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1439 Optimization of the Headspace Solid-Phase Microextraction Gas Chromatography for Volatile Compounds Determination in Phytophthora Cinnamomi Rands

Authors: Rui Qiu, Giles Hardy, Dong Qu, Robert Trengove, Manjree Agarwal, YongLin Ren

Abstract:

Phytophthora cinnamomi (P. c) is a plant pathogenic oomycete that is capable of damaging plants in commercial production systems and natural ecosystems worldwide. The most common methods for the detection and diagnosis of P. c infection are expensive, elaborate and time consuming. This study was carried out to examine whether species specific and life cycle specific volatile organic compounds (VOCs) can be absorbed by solid-phase microextraction fibers and detected by gas chromatography that are produced by P. c and another oomycete Pythium dissotocum. A headspace solid-phase microextraction (HS-SPME) together with gas chromatography (GC) method was developed and optimized for the identification of the VOCs released by P. c. The optimized parameters included type of fiber, exposure time, desorption temperature and desorption time. Optimization was achieved with the analytes of P. c+V8A and V8A alone. To perform the HS-SPME, six types of fiber were assayed and compared: 7μm Polydimethylsiloxane (PDMS), 100μm Polydimethylsiloxane (PDMS), 50/30μm Divinylbenzene/CarboxenTM/Polydimethylsiloxane DVB/CAR/PDMS), 65μm Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), 85μm Polyacrylate (PA) fibre and 85μm CarboxenTM/ Polydimethylsiloxane (Carboxen™/PDMS). In a comparison of the efficacy of the fibers, the bipolar fiber DVB/CAR/PDMS had a higher extraction efficiency than the other fibers. An exposure time of 16h with DVB/CAR/PDMS fiber in the sample headspace was enough to reach the maximum extraction efficiency. A desorption time of 3min in the GC injector with the desorption temperature of 250°C was enough for the fiber to desorb the compounds of interest. The chromatograms and morphology study confirmed that the VOCs from P. c+V8A had distinct differences from V8A alone, as did different life cycle stages of P. c and different taxa such as Pythium dissotocum. The study proved that P. c has species and life cycle specific VOCs, which in turn demonstrated the feasibility of this method as means of

Keywords: Gas chromatography, headspace solid-phase microextraction, optimization, volatile compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
1438 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nanofluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: Heat transfer, mini channel, nanofluid, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1437 Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive

Authors: M. A. Hassan, M. H. Sakinah, K. Kadirgama, D. Ramasamy, M. M. Noor, M. M. Rahman

Abstract:

Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil.

Keywords: Concentration, improvement, tribological, Copper (II) oxide, nanolubricant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1436 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition

Authors: Hamed Djalal

Abstract:

The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.

Keywords: Forced convection, friction factor pressure drop thermal hydraulic analysis, vertical heated rectangular channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
1435 Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications

Authors: Sam Rasoulzadeh, Atefeh Mousavi

Abstract:

Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.

Keywords: Heat transfer, solar reactor, fluidized bed reactor, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
1434 Comparative Study of Scheduling Algorithms for LTE Networks

Authors: Samia Dardouri, Ridha Bouallegue

Abstract:

Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.

Keywords: LTE, Multimedia flows, Scheduling algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4811
1433 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid

Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee

Abstract:

The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.

Keywords: Copper-CO2 nanofluid, molecular interfacial layer, thermal conductivity, molecular dynamic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
1432 Effect of White Kwao Extract (Pueraria mirifica) on in vitro Development and Implantation Rate of Mouse Embryo

Authors: Sansani Rungrattawatchai

Abstract:

The White Kwao (Pueraria mirifica), a potent phytoestrogenic medicinal plant, has long been use in Thailand as a traditional folkmedicine. However, no scientific information of the direct effect of White Kwao on the development of mammalian embryo was available. Therefore, the purpose of this study was to investigate the effect of White Kwao extract on the in vitro development and implantation rate of mouse embryos. This study was designed into two experiments. In the first experiment, the two-cell stage mouse embryos were collected from the oviduct of superovulated mature female mice, and randomly cultured in three different media, the M16, M16 supplemented with 0.52μg esthinylestradiol-17β, and M16 supplemented with 10 mg/ml White Kwao extract. The culture was incubated in CO2 incubator at 37 oC . After the embryos were cultivated, the developments of embryos were observed every 24 hours for 5 days. The development rate of embryos from the two-cell stage to blastocyst stage in the media was with White Kwao was significantly higher (p<0.05) than those of the control group (68.50% versus 43.50%) but did not differ from the positive control group (68.50% versus 57.66%). In the second experiment, hatched blastocysts, which obtained from three different media, were differently labeled the nuclei with two polynucleotide-specific fluorochromes, the propidium iodide (PI) and the bisbenzimide. The results showed that the number of trophectoderm cells in the blastocysts that cultivated in the media with White Kwao did not significantly differ from the control (80.00 versus 70 cells) and the positive control group (80.00 versus 112.50 cells). The average number of inner cell mass in the White Kwao treated group did not significantly differ from the control group (20.50 versus 16.00 cells) and the positive control group (20.50 versus 20.50 cells). The total cell number including the trophectoderm and the inner cell mass of the individual hatched blastocyst was evaluated. The cell number in the blastocysts obtained from the media with the White Kwao did not significantly differ from the control (94.25 + 9.50 versus 92.33 + 4.05) and the positive control group (94.25 + 9.50 versus 110.33 + 9.16). The results demonstrated that the White Kwao treatment group did have a stimulating effect on the in vitro development of mouse embryos. The exact mechanism that White Kwao stimulated mouse embryo development is not known. The suspect mechanism may in a manner similar to the mechanism that of estrogen stimulated the development of the mouse embryos. Futher studies are needed to transfer the blastocyst into the endometrium of pseudopreagnancy mice to evaluate the effect of White Kwao on implantation

Keywords: White Kwao (Pueraria mirifica), blastocyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
1431 Effect of Particle Size in Aviation Turbine Fuel-Al2O3 Nanofluids for Heat Transfer Applications

Authors: Sandipkumar Sonawane, Upendra Bhandarkar, Bhalchandra Puranik, S. Sunil Kumar

Abstract:

The effect of Alumina nanoparticle size on thermophysical properties, heat transfer performance and pressure loss characteristics of Aviation Turbine Fuel (ATF)-Al2O3 nanofluids is studied experimentally for the proposed application of regenerative cooling of semi-cryogenic rocket engine thrust chambers. Al2O3 particles with mean diameters of 50 nm or 150 nm are dispersed in ATF. At 500C and 0.3% particle volume concentration, the bigger particles show increases of 17% in thermal conductivity and 55% in viscosity, whereas the smaller particles show corresponding increases of 21% and 22% for thermal conductivity and viscosity respectively. Contrary to these results, experiments to study the heat transfer performance and pressure loss characteristics show that at the same pumping power, the maximum enhancement in heat transfer coefficient at 500C and 0.3% concentration is approximately 47% using bigger particles, whereas it is only 36% using smaller particles.

Keywords: Heat transfer performance, Nanofluids, Thermalconductivity, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
1430 Hospital Waste Management Practices: A Case Study in Iran

Authors: M. Farzadkia, S. Jorfi

Abstract:

Hospital waste is a category of waste consisting of infectious and non-infectious waste, which pose environmental and health risks. Therefore, special planning and management is required, due to the potential hazards of them. The lack of valid and comprehensive information regarding the generation and management of hospital waste in Iran is one of the most important problems in this field. This research aimed to evaluate hospital waste management efficiency in Karaj city, Iran. The four greatest hospitals in Karaj city had been selected in this cross-sectional study. Site observations and interviews with employees were implemented. The data was gathered based on the hospital waste management questionnaire which was designed by World Health Organization for developing countries. Collected Data had been analyzed using SPSS software. The average of solid waste which was generated per bed was 2.78 kg, which included 90% of domestic waste and 10% of infectious waste. Based on the quantitative analysis of general and infectious waste in these hospitals, the highest contributors of general waste were consisting of food waste (37.39%), while textile (28.06%) were the highest contributors of the infectious waste. According to the information contained in the questionnaires, the main defects of waste management in these hospitals were; inadequate staff in waste management sector, poorly disinfection of solid waste containers and temporary storage locations, and a lack of proper infectious waste treatment. According to the results of this research, waste management in these hospitals were far from optimum conditions. In order to improve the existing conditions, mentioned problems must be solved quickly, and planning for continuous monitoring in the waste management field in these hospitals should be established.

Keywords: Waste management, hospital wastes, solid wastes, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
1429 A Further Improvement on the Resurrected Core-Spreading Vortex Method

Authors: M-J. Huang, C-J. Huang, L-C. Chen

Abstract:

In a previously developed fast vortex method, the diffusion of the vortex sheet induced at the solid wall by the no-slip boundary conditions was modeled according to the approximation solution of Koumoutsakos and converted into discrete blobs in the vicinity of the wall. This scheme had been successfully applied to a simulation of the flow induced with an impulsively initiated circular cylinder. In this work, further modifications on this vortex method are attempted, including replacing the approximation solution by the boundary-element-method solution, incorporating a new algorithm for handling the over-weak vortex blobs, and diffusing the vortex sheet circulation in a new way suitable for high-curvature solid bodies. The accuracy is thus largely improved. The predictions of lift and drag coefficients for a uniform flow past a NASA airfoil agree well with the existing literature.

Keywords: Resurrected core-spreading vortex method, Boundaryelement method, Vortex sheet, Over-weak vortex blobs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
1428 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: Sajeena Beevi. B, Jose P. P., G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L and 20.32 g/L respectively.

Keywords: Anaerobic Digestion, Biogas, Optimization, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4774
1427 The Role of Motivations for Eco-driving and Social Norms on Behavioural Intentions Regarding Speed Limits and Time Headway

Authors: M. Cristea, F. Paran, P. Delhomme

Abstract:

Eco-driving allows the driver to optimize his/her behaviour in order to achieve several types of benefits: reducing pollution emissions, increasing road safety, and fuel saving. One of the main rules for adopting eco-driving is to anticipate the traffic events by avoiding strong acceleration or braking and maintaining a steady speed when possible. Therefore, drivers have to comply with speed limits and time headway. The present study explored the role of three types of motivation and social norms in predicting French drivers- intentions to comply with speed limits and time headway as eco-driving practices as well as examine the variations according to gender and age. 1234 drivers with ages between 18 and 75 years old filled in a questionnaire which was presented as part of an online survey aiming to better understand the drivers- road habits. It included items assessing: a) behavioural intentions to comply with speed limits and time headway according to three types of motivation: reducing pollution emissions, increasing road safety, and fuel saving, b) subjective and descriptive social norms regarding the intention to comply with speed limits and time headway, and c) sociodemographical variables. Drivers expressed their intention to frequently comply with speed limits and time headway in the following 6 months; however, they showed more intention to comply with speed limits as compared to time headway regardless of the type of motivation. The subjective injunctive norms were significantly more important in predicting drivers- intentions to comply with speed limits and time headway as compared to the descriptive norms. In addition, the most frequently reported type of motivation for complying with speed limits and time headway was increasing road safety followed by fuel saving and reducing pollution emissions, hence underlining a low motivation to practice eco-driving. Practical implications of the results are discussed.

Keywords: Eco-driving, social norms, speed limits, time headway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1426 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery

Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko

Abstract:

In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analyzed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realized via a twoway coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary Lagrangian-Eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analyzed in the study. The axial velocity at normalized position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.

Keywords: Large Eddy Simulation, Fluid Structural Interaction, Constricted Artery, Computational Fluid Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
1425 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube

Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi

Abstract:

In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.

Keywords: Nanofluid; heat transfer oil; mixed convection; inclined tube; laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673
1424 Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis

Authors: Rawia M. Khalil, Ahmed A. Abd El Rahman, Mahfouz A. Kassem, Mohamed S. El Ridi, Mona M. Abou Samra, Ghada E. A. Awad, Soheir S. Mansy

Abstract:

Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection.

Keywords: Candida infections, Hot homogenization, Nystatin, Solid lipid nanoparticles, Stability, Topical delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
1423 Designing an Optimal Safe Layout for a Fuel Storage Tanks Farm: Case Study of Jaipur Oil Depot

Authors: Moosa Haji Abbasi, Emad Benhelal, Arshad Ahmad

Abstract:

Storage tank farms are essential industrial facilities to accumulate oil, petrochemicals and gaseous products. Since tank farms contain huge mass of fuel and hazardous materials, they are always targets of serious accidents such as fire, explosion, spill and toxic release which may cause severe impacts on human health, environmental and properties.

Although having a safe layout is not able to prevent initiating accidents, however it effectively controls and reduces the adverse impact of such accidents.

The aim of this paper is to determine the optimal layout for a storage tank contains different type of hydrocarbon fuels. A quantitative risk assessment is carried out on a selected tank farm in Jaipur, India, with particular attention given to both the consequence modeling and the overall risk assessment using PHAST Software. Various designs of tank layouts are examined taking into consideration several issues of plant operations and maintenance. In all stages of the work, standard guidelines specified by the industry are considered and recommendations are substantiated with simulation results and risk quantification.

Keywords: Tank farm, safe distance, safe layout, risk assessment, PHAST.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15634
1422 Socio-Demographic Characteristics and Psychosocial Consequences of Sickle Cell Disease: The Case of Patients in a Public Hospital in Ghana

Authors: Vincent A. Adzika, Franklin N. Glozah, Collins S. K. Ahorlu

Abstract:

Background: Sickle Cell Disease (SCD) is of major public-health concern globally, with majority of patients living in Africa. Despite its relevance, there is a dearth of research to determine the socio-demographic distribution and psychosocial impact of SCD in Africa. The objective of this study therefore was to examine the socio-demographic distribution and psychosocial consequences of SCD among patients in Ghana and to assess their quality of life and coping mechanisms. Methods: A cross-sectional research design was used, involving the completion of questionnaires on socio-demographic characteristics, quality of life of individuals, anxiety and depression. Participants were 387 male and female patients attending a sickle cell clinic in a public hospital. Results: Results showed no gender and marital status differences in anxiety and depression. However, there were age and level of education variances in depression but not in anxiety. In terms of quality of life, patients were more satisfied by the presence of love, friends, relatives as well as home, community and neighbourhood environment. While pains of varied nature and severity were the major reasons for attending hospital in SCD condition, going to the hospital as well as having Faith in God was the frequently reported mechanisms for coping with an unbearable SCD attacks. Multiple regression analysis showed that some socio-demographic and quality of life indicators had strong associations with anxiety and/or depression. Conclusion: It is recommended that a multi-dimensional intervention strategy incorporating psychosocial dimensions should be considered in the treatment and management of SCD.

Keywords: Sickle cell disease, quality of life, anxiety, depression, socio-demographic characteristics, Ghana.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
1421 Synthesis and Characterization of ZnO and Fe3O4 Nanocrystals from Oleat-based Organometallic Compounds

Authors: PoiSim Khiew, WeeSiong Chiu, ThianKhoonTan, Shahidan Radiman, Roslan Abd-Shukor, Muhammad Azmi Abd-Hamid, ChinHua Chia

Abstract:

Magnetic and semiconductor nanomaterials exhibit novel magnetic and optical properties owing to their unique size and shape-dependent effects. With shrinking the size down to nanoscale region, various anomalous properties that normally not present in bulk start to dominate. Ability in harnessing of these anomalous properties for the design of various advance electronic devices is strictly dependent on synthetic strategies. Hence, current research has focused on developing a rational synthetic control to produce high quality nanocrystals by using organometallic approach to tune both size and shape of the nanomaterials. In order to elucidate the growth mechanism, transmission electron microscopy was employed as a powerful tool in performing real time-resolved morphologies and structural characterization of magnetic (Fe3O4) and semiconductor (ZnO) nanocrystals. The current synthetic approach is found able to produce nanostructures with well-defined shapes. We have found that oleic acid is an effective capping ligand in preparing oxide-based nanostructures without any agglomerations, even at high temperature. The oleate-based precursors and capping ligands are fatty acid compounds, which are respectively originated from natural palm oil with low toxicity. In comparison with other synthetic approaches in producing nanostructures, current synthetic method offers an effective route to produce oxide-based nanomaterials with well-defined shapes and good monodispersity. The nanocystals are well-separated with each other without any stacking effect. In addition, the as-synthesized nanopellets are stable in terms of chemically and physically if compared to those nanomaterials that are previous reported. Further development and extension of current synthetic strategy are being pursued to combine both of these materials into nanocomposite form that will be used as “smart magnetic nanophotocatalyst" for industry waste water treatment.

Keywords: Metal oxide nanomaterials, Nanophotocatalyst, Organometallic synthesis, Morphology Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
1420 Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses

Authors: A. Mourtzikou, D. Sygkridou, T. Georgakopoulos, G. Katsagounos, E. Stathatos

Abstract:

Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm2 were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte.

Keywords: Dye-sensitized solar panels, inkjet printing, quasi-solid-state electrolyte, semi-transparency, scale up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
1419 Estimating Marine Tidal Power Potential in Kenya

Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema

Abstract:

The rapidly diminishing fossil fuel reserves, their exorbitant cost and the increasingly apparent negative effect of fossil fuels to climate changes is a wake-up call to explore renewable energy. Wind, bio-fuel and solar power have already become staples of Kenyan electricity mix. The potential of electric power generation from marine tidal currents is enormous, with oceans covering more than 70% of the earth. However, attempts to harness marine tidal energy in Kenya, has yet to be studied thoroughly due to its promising, cyclic, reliable and predictable nature and the vast energy contained within it. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation and advantageous when compared to others. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the technology-specific requirements for tidal energy technologies and the physical resources. Temporal variations in resource intensity as well as the differences between small-scale applications are considered.

Keywords: Energy data assessment, environmental legislation, renewable energy, tidal-in-stream turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
1418 A Model to Study the Effect of Na+ ions on Ca2+diffusion under Rapid Buffering Approximation

Authors: Vikas Tewari, K.R. Pardasani

Abstract:

Calcium is very important for communication among the neurons. It is vital in a number of cell processes such as secretion, cell movement, cell differentiation. To reduce the system of reactiondiffusion equations of [Ca2+] into a single equation, two theories have been proposed one is excess buffer approximation (EBA) other is rapid buffer approximation (RBA). The RBA is more realistic than the EBA as it considers both the mobile and stationary endogenous buffers. It is valid near the mouth of the channel. In this work we have studied the effects of different types of buffers on calcium diffusion under RBA. The novel thing studied is the effect of sodium ions on calcium diffusion. The model has been made realistic by considering factors such as variable [Ca2+], [Na+] sources, sodium-calcium exchange protein(NCX), Sarcolemmal Calcium ATPase pump. The proposed mathematical leads to a system of partial differential equations which has been solved numerically to study the relationships between different parameters such as buffer concentration, buffer disassociation rate, calcium permeability. We have used Forward Time Centred Space (FTCS) approach to solve the system of partial differential equations.

Keywords: rapid buffer approximation, sodium-calcium exchangeprotein, Sarcolemmal Calcium ATPase pump, buffer disassociationrate, forward time centred space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1417 Pressure Swing Adsorption with Cassava Adsorbent for Dehydration of Ethanol Vapor

Authors: Chontira Boonfung, Panarat Rattanaphanee

Abstract:

Ethanol has become more attractive in fuel industry either as fuel itself or an additive that helps enhancing the octane number and combustibility of gasoline. This research studied a pressure swing adsorption using cassava-based adsorbent prepared from mixture of cassava starch and cassava pulp for dehydration of ethanol vapor. The apparatus used in the experiments consisted of double adsorption columns, an evaporator, and a vacuum pump. The feed solution contained 90-92 %wt of ethanol. Three process variables: adsorption temperatures (110, 120 and 130°C), adsorption pressures (1 and 2 bar gauge) and feed vapor flow rate (25, 50 and 75 % valve opening of the evaporator) were investigated. According to the experimental results, the optimal operating condition for this system was found to be at 2 bar gauge for adsorption pressure, 120°C for adsorption temperature and 25% valve opening of the evaporator. Production of 1.48 grams of ethanol with concentration higher than 99.5 wt% per gram of adsorbent was obtained. PSA with cassavabased adsorbent reported in this study could be an alternative method for production of nearly anhydrous ethanol. Dehydration of ethanol vapor achieved in this study is due to an interaction between free hydroxyl group on the glucose units of the starch and the water molecules.

Keywords: Adsorption, PSA, Ethanol, Dehydration, Cassava.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2811
1416 Location of Vortex Formation Threshold at Suction Inlets near Ground Planes – Ascending and Descending Conditions

Authors: Wei Hua Ho

Abstract:

Vortices can develop in intakes of turbojet and turbo fan aero engines during high power operation in the vicinity of solid surfaces. These vortices can cause catastrophic damage to the engine. The factors determining the formation of the vortex include both geometric dimensions as well as flow parameters. It was shown that the threshold at which the vortex forms or disappears is also dependent on the initial flow condition (i.e. whether a vortex forms after stabilised non vortex flow or vice-versa). A computational fluid dynamics study was conducted to determine the difference in thresholds between the two conditions. This is the first reported numerical investigation of the “memory effect". The numerical results reproduce the phenomenon reported in previous experimental studies and additional factors, which had not been previously studied, were investigated. They are the rate at which ambient velocity changes and the initial value of ambient velocity. The former was found to cause a shift in the threshold but not the later. It was also found that the varying condition thresholds are not symmetrical about the neutral threshold. The vortex to no vortex threshold lie slightly further away from the neutral threshold compared to the no vortex to vortex threshold. The results suggests that experimental investigation of vortex formation threshold performed either in vortex to no vortex conditions, or vice versa, solely may introduce mis-predictions greater than 10%.

Keywords: Jet Engine Test Cell, Unsteady flow, Inlet Vortex

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
1415 Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

Authors: K. Touafek, A. Khelifa, E. H. Khettaf, A. Embarek

Abstract:

Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.

Keywords: Experimental, Photovoltaic, Solar, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229