Search results for: Neural network training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3778

Search results for: Neural network training

2998 A New Robust Stability Criterion for Dynamical Neural Networks with Mixed Time Delays

Authors: Guang Zhou, Shouming Zhong

Abstract:

In this paper, we investigate the problem of the existence, uniqueness and global asymptotic stability of the equilibrium point for a class of neural networks, the neutral system has mixed time delays and parameter uncertainties. Under the assumption that the activation functions are globally Lipschitz continuous, we drive a new criterion for the robust stability of a class of neural networks with time delays by utilizing the Lyapunov stability theorems and the Homomorphic mapping theorem. Numerical examples are given to illustrate the effectiveness and the advantage of the proposed main results.

Keywords: Neural networks, Delayed systems, Lyapunov function, Stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
2997 Optimizing Forecasting for Indonesia's Coal and Palm Oil Exports: A Comparative Analysis of ARIMA, ANN, and LSTM Methods

Authors: Mochammad Dewo, Sumarsono Sudarto

Abstract:

The Exponential Triple Smoothing Algorithm approach nowadays, which is used to anticipate the export value of Indonesia's two major commodities, coal and palm oil, has a Mean Percentage Absolute Error (MAPE) value of 30-50%, which may be considered as a "reasonable" forecasting mistake. Forecasting errors of more than 30% shall have a domino effect on industrial output, as extra production adds to raw material, manufacturing and storage expenses. Whereas, reaching an "excellent" classification with an error value of less than 10% will provide new investors and exporters with confidence in the commercial development of related sectors. Industrial growth will bring out a positive impact on economic development. It can be applied for other commodities if the forecast error is less than 10%. The purpose of this project is to create a forecasting technique that can produce precise forecasting results with an error of less than 10%. This research analyzes forecasting methods such as ARIMA (Autoregressive Integrated Moving Average), ANN (Artificial Neural Network) and LSTM (Long-Short Term Memory). By providing a MAPE of 1%, this study reveals that ANN is the most successful strategy for forecasting coal and palm oil commodities in Indonesia.

Keywords: ANN, Artificial Neural Network, ARIMA, Autoregressive Integrated Moving Average, export value, forecast, LSTM, Long Short Term Memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224
2996 A Novel Approach to Positive Almost Periodic Solution of BAM Neural Networks with Time-Varying Delays

Authors: Lili Wang, Meng Hu

Abstract:

In this paper, based on almost periodic functional hull theory and M-matrix theory, some sufficient conditions are established for the existence and uniqueness of positive almost periodic solution for a class of BAM neural networks with time-varying delays. An example is given to illustrate the main results.

Keywords: Delayed BAM neural networks, Hull theorem, Mmatrix, Almost periodic solution, Global exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
2995 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: Brain machine interface, decision-making, local field potentials, mobile robot, navigation, neural network, rat, signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
2994 110 MW Geothermal Power Plant Multiple Simulator, Using Wireless Technology

Authors: Guillermo Romero-Jiménez, Luis A. Jiménez-Fraustro, Mayolo Salinas-Camacho, Heriberto Avalos-Valenzuela

Abstract:

A geothermal power plant multiple simulator for operators training is presented. The simulator is designed to be installed in a wireless local area network and has a capacity to train one to six operators simultaneously, each one with an independent simulation session. The sessions must be supervised only by one instructor. The main parts of this multiple simulator are: instructor and operator-s stations. On the instructor station, the instructor controls the simulation sessions, establishes training exercises and supervises each power plant operator in individual way. This station is hosted in a Main Personal Computer (NS) and its main functions are: to set initial conditions, snapshots, malfunctions or faults, monitoring trends, and process and soft-panel diagrams. On the other hand the operators carry out their actions over the power plant simulated on the operator-s stations; each one is also hosted in a PC. The main software of instructor and operator-s stations are executed on the same NS and displayed in PCs through graphical Interactive Process Diagrams (IDP). The geothermal multiple simulator has been installed in the Geothermal Simulation Training Center (GSTC) of the Comisi├│n Federal de Electricidad, (Federal Commission of Electricity, CFE), Mexico, and is being utilized as a part of the training courses for geothermal power plant operators.

Keywords: Geothermal power plant, multiple simulator, training operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
2993 Passivity Analysis of Stochastic Neural Networks With Multiple Time Delays

Authors: Biao Qin, Jin Huang, Jiaojiao Ren, Wei Kang

Abstract:

This paper deals with the problem of passivity analysis for stochastic neural networks with leakage, discrete and distributed delays. By using delay partitioning technique, free weighting matrix method and stochastic analysis technique, several sufficient conditions for the passivity of the addressed neural networks are established in terms of linear matrix inequalities (LMIs), in which both the time-delay and its time derivative can be fully considered. A numerical example is given to show the usefulness and effectiveness of the obtained results.

Keywords: Passivity, Stochastic neural networks, Multiple time delays, Linear matrix inequalities (LMIs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
2992 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics

Authors: Bharathi P. T, P. Subashini

Abstract:

Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.

Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
2991 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
2990 New Stability Analysis for Neural Networks with Time-Varying Delays

Authors: Miaomiao Yang, Shouming Zhong

Abstract:

This paper studies the problem of asymptotically stability for neural networks with time-varying delays.By establishing a suitable Lyapunov-Krasovskii function and several novel sufficient conditions are obtained to guarantee the asymptotically stability of the considered system. Finally,two numerical examples are given to illustrate the effectiveness of the proposed main results.

Keywords: Neural networks, Lyapunov-Krasovskii, Time-varying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
2989 A Fast Adaptive Content-based Retrieval System of Satellite Images Database using Relevance Feedback

Authors: Hanan Mahmoud Ezzat Mahmoud, Alaa Abd El Fatah Hefnawy

Abstract:

In this paper, we present a system for content-based retrieval of large database of classified satellite images, based on user's relevance feedback (RF).Through our proposed system, we divide each satellite image scene into small subimages, which stored in the database. The modified radial basis functions neural network has important role in clustering the subimages of database according to the Euclidean distance between the query feature vector and the other subimages feature vectors. The advantage of using RF technique in such queries is demonstrated by analyzing the database retrieval results.

Keywords: content-based image retrieval, large database of image, RBF neural net, relevance feedback

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
2988 Low Power Digital System for Reconfigurable Neural Recording System

Authors: Peng Li, Jun Zhou, Xin Liu, Chee Keong Ho, Xiaodan Zou, Minkyu Je

Abstract:

A digital system is proposed for low power 100- channel neural recording system in this paper, which consists of 100 amplifiers, 100 analog-to-digital converters (ADC), digital controller and baseband, transceiver for data link and RF command link. The proposed system is designed in a 0.18 μm CMOS process and 65 nm CMOS process.

Keywords: multiplex, neural recording, synchronization, transceiver

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
2987 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
2986 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data

Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani

Abstract:

Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.

Keywords: EMD, neural data processing, spike detection, wavelet decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
2985 TeleMe Speech Booster: Web-Based Speech Therapy and Training Program for Children with Articulation Disorders

Authors: C. Treerattanaphan, P. Boonpramuk, P. Singla

Abstract:

Frequent, continuous speech training has proven to be a necessary part of a successful speech therapy process, but constraints of traveling time and employment dispensation become key obstacles especially for individuals living in remote areas or for dependent children who have working parents. In order to ameliorate speech difficulties with ample guidance from speech therapists, a website has been developed that supports speech therapy and training for people with articulation disorders in the standard Thai language. This web-based program has the ability to record speech training exercises for each speech trainee. The records will be stored in a database for the speech therapist to investigate, evaluate, compare and keep track of all trainees’ progress in detail. Speech trainees can request live discussions via video conference call when needed. Communication through this web-based program facilitates and reduces training time in comparison to walk-in training or appointments. This type of training also allows people with articulation disorders to practice speech lessons whenever or wherever is convenient for them, which can lead to a more regular training processes.

Keywords: Web-Based Remote Training Program, Thai Speech Therapy, Articulation Disorders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
2984 Neural Networks: From Black Box towards Transparent Box Application to Evapotranspiration Modeling

Authors: A. Johannet, B. Vayssade, D. Bertin

Abstract:

Neural networks are well known for their ability to model non linear functions, but as statistical methods usually does, they use a no parametric approach thus, a priori knowledge is not obvious to be taken into account no more than the a posteriori knowledge. In order to deal with these problematics, an original way to encode the knowledge inside the architecture is proposed. This method is applied to the problem of the evapotranspiration inside karstic aquifer which is a problem of huge utility in order to deal with water resource.

Keywords: Neural-Networks, Hydrology, Evapotranpiration, Hidden Function Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
2983 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
2982 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).

Keywords: Feature extraction, heart rate variability, hypertension, residual networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
2981 SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals

Authors: Suresh S. Salankar, Balasaheb M. Patre

Abstract:

Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.

Keywords: Classification, MLP NN, backpropagation algorithm, SVM, Receiver Operating Characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
2980 Model for Knowledge Representation using Sample Problems and Designing a Program for Automatically Solving Algebraic Problems

Authors: Nhon Do, Hien Nguyen

Abstract:

Nowadays there are many methods for representing knowledge such as semantic network, neural network, and conceptual graphs. Nonetheless, these methods are not sufficiently efficient when applied to perform and deduce on knowledge domains about supporting in general education such as algebra, analysis or plane geometry. This leads to the introduction of computational network which is a useful tool for representation knowledge base, especially for computational knowledge, especially knowledge domain about general education. However, when dealing with a practical problem, we often do not immediately find a new solution, but we search related problems which have been solved before and then proposing an appropriate solution for the problem. Besides that, when finding related problems, we have to determine whether the result of them can be used to solve the practical problem or not. In this paper, the extension model of computational network has been presented. In this model, Sample Problems, which are related problems, will be used like the experience of human about practical problem, simulate the way of human thinking, and give the good solution for the practical problem faster and more effectively. This extension model is applied to construct an automatic system for solving algebraic problems in middle school.

Keywords: educational software, artificial intelligence, knowledge base system, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
2979 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248
2978 Optimizing TCP Vegas- Performance with Packet Spacing and Effect of Variable FTP Packet Size over Wireless IPv6 Network

Authors: B. S. Yew , B. L. Ong , R. B. Ahmad

Abstract:

This paper describes the performance of TCP Vegas over the wireless IPv6 network. The performance of TCP Vegas is evaluated using network simulator (ns-2). The simulation experiment investigates how packet spacing affects the network delay, network throughput and network efficiency of TCP Vegas. Moreover, we investigate how the variable FTP packet sizes affect the network performance. The result of the simulation experiment shows that as the packet spacing is implements, the network delay is reduces, network throughput and network efficiency is optimizes. As the FTP packet sizes increase, the ratio of delay per throughput decreases. From the result of experiment, we propose the appropriate packet size in transmitting file transfer protocol application using TCP Vegas with packet spacing enhancement over wireless IPv6 environment in ns-2. Additionally, we suggest the appropriate ratio in determining the appropriate RTT and buffer size in a network.

Keywords: TCP Vegas, Packet Spacing, Packet Size, Wireless IPv6, ns-2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
2977 Testing the Accuracy of ML-ANN for Harmonic Estimation in Balanced Industrial Distribution Power System

Authors: Wael M. El-Mamlouk, Metwally A. El-Sharkawy, Hossam. E. Mostafa

Abstract:

In this paper, we analyze and test a scheme for the estimation of electrical fundamental frequency signals from the harmonic load current and voltage signals. The scheme was based on using two different Multi Layer Artificial Neural Networks (ML-ANN) one for the current and the other for the voltage. This study also analyzes and tests the effect of choosing the optimum artificial neural networks- sizes which determine the quality and accuracy of the estimation of electrical fundamental frequency signals. The simulink tool box of the Matlab program for the simulation of the test system and the test of the neural networks has been used.

Keywords: Harmonics, Neural Networks, Modeling, Simulation, Active filters, electric Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
2976 DCGA Based-Transmission Network Expansion Planning Considering Network Adequacy

Authors: H. Shayeghi, M. Mahdavi, H. Haddadian

Abstract:

Transmission network expansion planning (TNEP) is an important component of power system planning that its task is to minimize the network construction and operational cost while satisfying the demand increasing, imposed technical and economic conditions. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, the lines adequacy rate has not been studied after the planning horizon, i.e. when the expanded network misses its adequacy and needs to be expanded again. In this paper, in order to take transmission lines condition after expansion in to account from the line loading view point, the adequacy of transmission network is considered for solution of STNEP problem. To obtain optimal network arrangement, a decimal codification genetic algorithm (DCGA) is being used for minimizing the network construction and operational cost. The effectiveness of the proposed idea is tested on the Garver's six-bus network. The results evaluation reveals that the annual worth of network adequacy has a considerable effect on the network arrangement. In addition, the obtained network, based on the DCGA, has lower investment cost and higher adequacy rate. Thus, the network satisfies the requirements of delivering electric power more safely and reliably to load centers.

Keywords: STNEP Problem, Network Adequacy, DCGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
2975 Virtual Training, Human-Computer and Software Interactions, and Social-Based Embodiness

Authors: Philippe Fauquet-Alekhine

Abstract:

For professions of high risk industries, simulation training has always been thought in terms of high degree of fidelity regarding the real operational situation. Due to the recent progress, this way of training is changing, modifying the human-computer and software interactions: the interactions between trainees during simulation training session tend to become virtual, transforming the social-based embodiness (the way subjects integrate social skills for interpersonal relationship with co-workers). On the basis of the analysis of eight different profession trainings, a categorization of interactions has help to produce an analytical tool, the social interactions table. This tool may be very valuable to point out the changes of social interactions when the training sessions are skipping from a high fidelity simulator to a virtual simulator. In this case, it helps the designers of professional training to analyze and to assess the consequences of the potential lack the social-based embodiness.

Keywords: Interface, interaction, simulator, virtual training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
2974 Monitoring and Prediction of Intra-Crosstalk in All-Optical Network

Authors: Ahmed Jedidi, Mesfer Mohammed Alshamrani, Alwi Mohammad A. Bamhdi

Abstract:

Optical performance monitoring and optical network management are essential in building a reliable, high-capacity, and service-differentiation enabled all-optical network. One of the serious problems in this network is the fact that optical crosstalk is additive, and thus the aggregate effect of crosstalk over a whole AON may be more nefarious than a single point of crosstalk. As results, we note a huge degradation of the Quality of Service (QoS) in our network. For that, it is necessary to identify and monitor the impairments in whole network. In this way, this paper presents new system to identify and monitor crosstalk in AONs in real-time fashion. particular, it proposes a new technique to manage intra-crosstalk in objective to relax QoS of the network.

Keywords: All-optical networks, optical crosstalk, optical cross-connect, crosstalk, monitoring crosstalk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
2973 Exponential Passivity Criteria for BAM Neural Networks with Time-Varying Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper,the exponential passivity criteria for BAM neural networks with time-varying delays is studied.By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments,a novel sufficient condition is established to guarantee the exponential stability of the considered system.Finally,a numerical example is provided to illustrate the usefulness of the proposed main results

Keywords: BAM neural networks, Exponential passivity, LMI approach, Time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
2972 Loss Reduction and Reliability Improvement of Industrial Distribution System through Network Reconfiguration

Authors: Ei Ei Phyu, Kyaw Myo Lin, Thin Thin Moe

Abstract:

The paper presents an approach to improve the reliability and reduce line losses of practical distribution system applying network reconfiguration. The change of the topology redirects the power flow within the distribution network to obtain better performance of the system. Practical distribution network (Pyigyitagon Industrial Zone (I)) is used as the case study network. The detailed calculations of the reliability indices are done by using analytical method and power flow calculation is performed by Newton-Rephason solver. The comparison of various network reconfiguration techniques are described with respect to power loss and reliability index levels. Finally, the optimal reconfigured network is selected among difference cases based on the two factors: the most reliable network and the least loss minimization.

Keywords: Distribution system reliability, loss reduction, network reconfiguration, reliability enhancement, reliability indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
2971 Domain-based Key Management Scheme for Active Network

Authors: Jong-Whoi Shin, Soon-Tai Park, Chong-Sun Hwang

Abstract:

Active network was developed to solve the problem of the current sharing-based network–difficulty in applying new technology, service or standard, and duplicated operation at several protocol layers. Active network can transport the packet loaded with the executable codes, which enables to change the state of the network node. However, if the network node is placed in the sharing-based network, security and safety issues should be resolved. To satisfy this requirement, various security aspects are required such as authentication, authorization, confidentiality and integrity. Among these security components, the core factor is the encryption key. As a result, this study is designed to propose the scheme that manages the encryption key, which is used to provide security of the comprehensive active directory, based on the domain.

Keywords: Active Network, Domain-based Key Management, Security Components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
2970 Motion Control of an Autonomous Surface Vessel for Enhanced Situational Awareness

Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja

Abstract:

This paper focuses on the critical components of the situational awareness (SA), the controls of position and orientation of an autonomous surface vessel (ASV). Moving of vessel into desired area in particular sea is a challenging but important task for ASVs to achieve high level of autonomy under adverse conditions. With the SA strategy, the approach motion by neural control of an initial stage of an ASV trajectory using neural network predictive controller and the circular motion by control of yaw moment in the final stage of trajectory were proposed. This control system has been demonstrated and evaluated by simulation of maritime maneuvers using software package Simulink. From the simulation results it can be seen that the fast SA of similar ASVs with economy in energy can be asserted during the maritime missions in search-and-rescue operations.

Keywords: Autonomous surface vessels, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
2969 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: Text detection, CNN, PZM, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163