Search results for: Adaptive Resolution Analysis
8815 Influence of Social-Psychological Training on Selected Features of University Students
Authors: Anežka Hamranová, Blandína Šramová, Katarína Fichnová
Abstract:
We presented results of research aimed on findings influence of social - psychological training (realized with students of Constantine the Philosopher University- future teachers within their undergraduate preparation) on the choice of intrapersonal and interpersonal features. After social- psychological training using Interpersonal Check List (ICL) we found out shift of behavior to more adaptive forms in categories, which are characterized by extroversive friendly behavior, willingness to cooperation, conformity regard to social situation, responsible and regardful behavior. Using State-Trait Anxiety Inventory (STAI) we found out the cut down of state anxiety and of trait anxiety. The report was processed within grants KEGA 3/5269/07 and VEGA 1/3675/06.Keywords: Intrapersonal and interpersonal features, social -psychological training, social competences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15728814 An Amalgam Approach for DICOM Image Classification and Recognition
Authors: J. Umamaheswari, G. Radhamani
Abstract:
This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.
Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22598813 Generalized Noise Analysis of Log Domain Static Translinear Circuits
Authors: E. Farshidi
Abstract:
This paper presents a new general technique for analysis of noise in static log-domain translinear circuits. It is demonstrated that employing this technique, leads to a general, simple and routine method of the noise analysis. The circuit has been simulated by HSPICE. The simulation results are seen to conform to the theoretical analysis and shows benefits of the proposed circuit.
Keywords: Noise analysis, log-domain, static, dynamic, translinear loop, companding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12358812 Utilizing Adaptive Software to Enhance Information Management
Authors: J. Soini, P. Sillberg, J. Raitaniemi
Abstract:
The task of strategic information technology management is to focus on adapting technology to ensure competitiveness. A key factor for success in this sector is awareness and readiness to deploy new technologies and exploit the services they offer. Recently, the need for more flexible and dynamic user interfaces (UIs) has been recognized, especially in mobile applications. An ongoing research project (MOP), initiated by TUT in Finland, is looking at how mobile device UIs can be adapted for different needs and contexts. It focuses on examining the possibilities to develop adapter software for solving the challenges related to the UI and its flexibility in mobile devices. This approach has great potential for enhancing information transfer in mobile devices, and consequently for improving information management. The technology presented here could be one of the key emerging technologies in the information technology sector in relation to mobile devices and telecommunications.Keywords: Emerging technologies, Flexible user interfaces, Information management, Information technology, Mobile technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16518811 ANFIS Modeling of the Surface Roughness in Grinding Process
Authors: H. Baseri, G. Alinejad
Abstract:
The objective of this study is to design an adaptive neuro-fuzzy inference system (ANFIS) for estimation of surface roughness in grinding process. The Used data have been generated from experimental observations when the wheel has been dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experimental procedure the grinding conditions are constant and only the dressing conditions are varied. The comparison of the predicted values and the experimental data indicates that the ANFIS model has a better performance with respect to back-propagation neural network (BPNN) model which has been presented by the authors in previous work for estimation of the surface roughness.Keywords: Grinding, ANFIS, Neural network, Disc dressing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24168810 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: Comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15428809 PM10 Chemical Characteristics in a Background Site at the Universidad Libre Bogotá
Authors: Laura X. Martinez, Andrés F. Rodríguez, Ruth A. Catacoli
Abstract:
One of the most important factors for air pollution is that the concentrations of PM10 maintain a constant trend, with the exception of some places where that frequently surpasses the allowed ranges established by Colombian legislation. The community that surrounds the Universidad Libre Bogotá is inhabited by a considerable number of students and workers, all of whom are possibly being exposed to PM10 for long periods of time while on campus. Thus, the chemical characterization of PM10 found in the ambient air at the Universidad Libre Bogotá was identified as a problem. A Hi-Vol sampler and EPA Test Method 5 were used to determine if the quality of air is adequate for the human respiratory system. Additionally, quartz fiber filters were utilized during sampling. Samples were taken three days a week during a dry period throughout the months of November and December 2015. The gravimetric analysis method was used to determine PM10 concentrations. The chemical characterization includes non-conventional carcinogenic pollutants. Atomic absorption spectrophotometry (AAS) was used for the determination of metals and VOCs were analyzed using the FTIR (Fourier transform infrared spectroscopy) method. In this way, concentrations of PM10, ranging from values of 13 µg/m3 to 66 µg/m3, were obtained; these values were below standard conditions. This evidence concludes that the PM10 concentrations during an exposure period of 24 hours are lower than the values established by Colombian law, Resolution 610 of 2010; however, when comparing these with the limits set by the World Health Organization (WHO), these concentrations could possibly exceed permissible levels.Keywords: Air quality, atomic absorption spectrophotometry, Fourier transform infrared spectroscopy, particulate matter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9148808 Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network
Authors: Cauvery N. K., K. V. Viswanatha
Abstract:
Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.Keywords: Ad hoc networks, On-demand routing, Swarmintelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18358807 Using a Trust-Based Environment Key for Mobile Agent Code Protection
Authors: Salima Hacini, Zahia Guessoum, Zizette Boufaïda
Abstract:
Human activities are increasingly based on the use of remote resources and services, and on the interaction between remotely located parties that may know little about each other. Mobile agents must be prepared to execute on different hosts with various environmental security conditions. The aim of this paper is to propose a trust based mechanism to improve the security of mobile agents and allow their execution in various environments. Thus, an adaptive trust mechanism is proposed. It is based on the dynamic interaction between the agent and the environment. Information collected during the interaction enables generation of an environment key. This key informs on the host-s trust degree and permits the mobile agent to adapt its execution. Trust estimation is based on concrete parameters values. Thus, in case of distrust, the source of problem can be located and a mobile agent appropriate behavior can be selected.Keywords: Internet security, malicious host, mobile agent security, trust management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14138806 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.
Keywords: Airborne laser scanning, digital terrain models, filtering, forested areas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7188805 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10988804 A Model for Bidding Markup Decisions Making based-on Agent Learning
Authors: W. Hou, X. Shan, X. Ye
Abstract:
Bidding is a very important business function to find latent contractors of construction projects. Moreover, bid markup is one of the most important decisions for a bidder to gain a reasonable profit. Since the bidding system is a complex adaptive system, bidding agent need a learning process to get more valuable knowledge for a bid, especially from past public bidding information. In this paper, we proposed an iterative agent leaning model for bidders to make markup decisions. A classifier for public bidding information named PIBS is developed to make full use of history data for classifying new bidding information. The simulation and experimental study is performed to show the validity of the proposed classifier. Some factors that affect the validity of PIBS are also analyzed at the end of this work.Keywords: bidding markup, decision making, agent learning, information similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24158803 Perceived Constraints on Sport Participation among Young Koreans in Australia
Authors: Jae Won Kang
Abstract:
The purpose of this study was to examine a broader range of sport constraints perceived by young Koreans in Australia who may need to adjust to changing behavioral expectations due to the socio-cultural transitions. Regardless of gender, in terms of quantitative findings, the most important participation constraints within the seven categories were resources, access, interpersonal, affective, religious, socio-cultural, and physical in that order. The most important constraining items were a lack of time, access, information, adaptive skills, and parental and family support in that order. Qualitative research found young Korean’s participation constraints among three categories (time, parental control and interpersonal constraints). It is possible that different ethnic groups would be constrained by different factors; however, this is outside the scope of this study.
Keywords: Constraints, cultural adjustment, Sport, Young Koreans in Australia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26288802 Color and Layout-based Identification of Documents Captured from Handheld Devices
Authors: Ardhendu Behera, Denis Lalanne, Rolf Ingold
Abstract:
This paper proposes a method, combining color and layout features, for identifying documents captured from low-resolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. Our identification method first uses the color information in the documents in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining of the search space.Keywords: Document color modeling, document visualsignature, kernel density estimation, document identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15718801 Consistent Modeling of Functional Dependencies along with World Knowledge
Authors: Sven Rebhan, Nils Einecke, Julian Eggert
Abstract:
In this paper we propose a method for vision systems to consistently represent functional dependencies between different visual routines along with relational short- and long-term knowledge about the world. Here the visual routines are bound to visual properties of objects stored in the memory of the system. Furthermore, the functional dependencies between the visual routines are seen as a graph also belonging to the object-s structure. This graph is parsed in the course of acquiring a visual property of an object to automatically resolve the dependencies of the bound visual routines. Using this representation, the system is able to dynamically rearrange the processing order while keeping its functionality. Additionally, the system is able to estimate the overall computational costs of a certain action. We will also show that the system can efficiently use that structure to incorporate already acquired knowledge and thus reduce the computational demand.Keywords: Adaptive systems, Knowledge representation, Machinevision, Systems engineering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16968800 Improving Image Quality in Remote Sensing Satellites using Channel Coding
Authors: H. M. Behairy, M. S. Khorsheed
Abstract:
Among other factors that characterize satellite communication channels is their high bit error rate. We present a system for still image transmission over noisy satellite channels. The system couples image compression together with error control codes to improve the received image quality while maintaining its bandwidth requirements. The proposed system is tested using a high resolution satellite imagery simulated over the Rician fading channel. Evaluation results show improvement in overall system including image quality and bandwidth requirements compared to similar systems with different coding schemes.Keywords: Image Transmission, Image Compression, Channel Coding, Error-Control Coding, DCT, Convolution Codes, Viterbi Algorithm, PCGC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18578799 Modeling and Analysis of a Cruise Control System
Authors: Anthony Spiteri Staines
Abstract:
This paper examines the modeling and analysis of a cruise control system using a Petri net based approach, task graphs, invariant analysis and behavioral properties. It shows how the structures used can be verified and optimized.Keywords: Software Engineering, Real Time Analysis andDesign, Petri Nets, Task Graphs, Parallelism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23638798 Web Driving Performance Monitoring System
Authors: Ahmad Aljaafreh
Abstract:
Safer driver behavior promoting is the main goal of this paper. It is a fact that drivers behavior is relatively safer when being monitored. Thus, in this paper, we propose a monitoring system to report specific driving event as well as the potentially aggressive events for estimation of the driving performance. Our driving monitoring system is composed of two parts. The first part is the in-vehicle embedded system which is composed of a GPS receiver, a two-axis accelerometer, radar sensor, OBD interface, and GPRS modem. The design considerations that led to this architecture is described in this paper. The second part is a web server where an adaptive hierarchical fuzzy system is proposed to classify the driving performance based on the data that is sent by the in-vehicle embedded system and the data that is provided by the geographical information system (GIS). Our system is robust, inexpensive and small enough to fit inside a vehicle without distracting the driver.
Keywords: Driving monitoring system, In-vehicle embedded system, Hierarchical fuzzy system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24688797 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors
Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder
Abstract:
In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished though the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.
Keywords: Analog to digital conversion, digitization, sampling rate, ultrasonic sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4498796 Second-order Time Evolution Scheme for Time-dependent Neutron Transport Equation
Authors: Zhenying Hong, Guangwei Yuan, Xuedong Fu, Shulin Yang
Abstract:
In this paper, the typical exponential method, diamond difference and modified time discrete scheme is researched for self adaptive time step. The second-order time evolution scheme is applied to time-dependent spherical neutron transport equation by discrete ordinates method. The numerical results show that second-order time evolution scheme associated exponential method has some good properties. The time differential curve about neutron current is more smooth than that of exponential method and diamond difference and modified time discrete scheme.
Keywords: Exponential method, diamond difference, modified time discrete scheme, second-order time evolution scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15838795 Investigation of the Tattooed Skin by OCT
Authors: Young Geun Kim, Tae Woo Lee, Changmin Yeo, Jung min Yoo, Yeo Jin Kang, Tack-Joong Kim, Byungjo Jung, Ji Hun Cha, Chan Hoi Hur, Dong-Sup Kim, Ki Jung Park, Han Sung Kim
Abstract:
The intention of this lessons is to assess the probability of optical coherence tomography (OCT) for biometric recognition. The OCT is the foundation on an optical signal acquisition and processing method and has the micrometer-resolution. In this study, we used the porcine skin for verifying the abovementioned means. The porcine tissue was sound acknowledged for structural and immunohistochemical similarity with human skin, so it could be suitable for pre-clinical trial as investigational specimen. For this reason, it was tattooed by the tattoo machine with the tattoo-pigment. We detected the pattern of the tattooed skin by the OCT according to needle speed. The result was consistent with the histology images. This result showed that the OCT was effective to examine the tattooed skin section noninvasively. It might be available to identify morphological changes inside the skin.Keywords: mechanical skin damage, optical coherence tomography, tattooed skin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17668794 Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis
Authors: M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee
Abstract:
The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis.Keywords: Morphometric, Tor tambroides, Stepwise Discriminant Analysis , Neural Network Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21508793 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah
Abstract:
Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.Keywords: Hyperspectral image, spatial hypergraph, dimensionality reduction, semantic interpretation, band selection, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12208792 ANFIS Approach for Locating Faults in Underground Cables
Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat
Abstract:
This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system.
Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.
Keywords: ANFIS, Fault location, Underground Cable, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27418791 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System
Authors: S. Yaman, S. Rostami
Abstract:
In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.
Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16498790 An Overview of the Porosity Classification in Carbonate Reservoirs and Their Challenges: An Example of Macro-Microporosity Classification from Offshore Miocene Carbonate in Central Luconia, Malaysia
Authors: Hammad T. Janjuhah, Josep Sanjuan, Mohamed K. Salah
Abstract:
Biological and chemical activities in carbonates are responsible for the complexity of the pore system. Primary porosity is generally of natural origin while secondary porosity is subject to chemical reactivity through diagenetic processes. To understand the integrated part of hydrocarbon exploration, it is necessary to understand the carbonate pore system. However, the current porosity classification scheme is limited to adequately predict the petrophysical properties of different reservoirs having various origins and depositional environments. Rock classification provides a descriptive method for explaining the lithofacies but makes no significant contribution to the application of porosity and permeability (poro-perm) correlation. The Central Luconia carbonate system (Malaysia) represents a good example of pore complexity (in terms of nature and origin) mainly related to diagenetic processes which have altered the original reservoir. For quantitative analysis, 32 high-resolution images of each thin section were taken using transmitted light microscopy. The quantification of grains, matrix, cement, and macroporosity (pore types) was achieved using a petrographic analysis of thin sections and FESEM images. The point counting technique was used to estimate the amount of macroporosity from thin section, which was then subtracted from the total porosity to derive the microporosity. The quantitative observation of thin sections revealed that the mouldic porosity (macroporosity) is the dominant porosity type present, whereas the microporosity seems to correspond to a sum of 40 to 50% of the total porosity. It has been proven that these Miocene carbonates contain a significant amount of microporosity, which significantly complicates the estimation and production of hydrocarbons. Neglecting its impact can increase uncertainty about estimating hydrocarbon reserves. Due to the diversity of geological parameters, the application of existing porosity classifications does not allow a better understanding of the poro-perm relationship. However, the classification can be improved by including the pore types and pore structures where they can be divided into macro- and microporosity. Such studies of microporosity identification/classification represent now a major concern in limestone reservoirs around the world.
Keywords: Carbonate reservoirs, microporosity, overview of porosity classification, reservoir characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10068789 Design of FIR Filter for Water Level Detection
Authors: Sakol Udomsiri, Masahiro Iwahashi
Abstract:
This paper proposes a new design of spatial FIR filter to automatically detect water level from a video signal of various river surroundings. A new approach in this report applies "addition" of frames and a "horizontal" edge detector to distinguish water region and land region. Variance of each line of a filtered video frame is used as a feature value. The water level is recognized as a boundary line between the land region and the water region. Edge detection filter essentially demarcates between two distinctly different regions. However, the conventional filters are not automatically adaptive to detect water level in various lighting conditions of river scenery. An optimized filter is purposed so that the system becomes robust to changes of lighting condition. More reliability of the proposed system with the optimized filter is confirmed by accuracy of water level detection.Keywords: water level, video, filter, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22198788 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems
Authors: Semih Demir, Anil Celebi
Abstract:
Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.
Keywords: Clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14658787 New Wavelet-Based Superresolution Algorithm for Speckle Reduction in SAR Images
Authors: Mario Mastriani
Abstract:
This paper describes a novel projection algorithm, the Projection Onto Span Algorithm (POSA) for wavelet-based superresolution and removing speckle (in wavelet domain) of unknown variance from Synthetic Aperture Radar (SAR) images. Although the POSA is good as a new superresolution algorithm for image enhancement, image metrology and biometric identification, here one will use it like a tool of despeckling, being the first time that an algorithm of super-resolution is used for despeckling of SAR images. Specifically, the speckled SAR image is decomposed into wavelet subbands; POSA is applied to the high subbands, and reconstruct a SAR image from the modified detail coefficients. Experimental results demonstrate that the new method compares favorably to several other despeckling methods on test SAR images.
Keywords: Projection, speckle, superresolution, synthetic aperture radar, thresholding, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16188786 Image Processing Using Color and Object Information for Wireless Capsule Endoscopy
Authors: Jin-Hee Park, Yong-Gyu Lee, Gilwon Yoon
Abstract:
Wireless capsule endoscopy provides real-time images in the digestive tract. Capsule images are usually low resolution and are diverse images due to travel through various regions of human body. Color information has been a primary reference in predicting abnormalities such as bleeding. Often color is not sufficient for this purpose. In this study, we took morphological shapes into account as additional, but important criterion. First, we processed gastric images in order to indentify various objects in the image. Then, we analyzed color information in the object. In this way, we could remove unnecessary information and increase the accuracy. Compared to our previous investigations, we could handle images of various degrees of brightness and improve our diagnostic algorithm.
Keywords: Capsule Endoscopy, HSV model, Image processing, Object Identification, Color Separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055