Search results for: methane yield.
100 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process
Authors: F. Al-Mufadi, F. Djavanroodi
Abstract:
During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of Standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67HV from 21HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.
Keywords: SPD, ECAP, FEM, Pure Al, Mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251099 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies
Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani
Abstract:
The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a) synthesizing such PTMDs for particular applications and b) evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.
Keywords: Active tuned mass damper, high-rise building, multi-frequency tuning, vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12898 Deposition Rate and Energy Enhancements of TiN Thin-Film in a Magnetized Sheet Plasma Source
Authors: Hamdi Muhyuddin D. Barra, Henry J. Ramos
Abstract:
Titanium nitride (TiN) has been synthesized using the sheet plasma negative ion source (SPNIS). The parameters used for its effective synthesis has been determined from previous experiments and studies. In this study, further enhancement of the deposition rate of TiN synthesis and advancement of the SPNIS operation is presented. This is primarily achieved by the addition of Sm-Co permanent magnets and a modification of the configuration in the TiN deposition process. The magnetic enhancement is aimed at optimizing the sputtering rate and the sputtering yield of the process. The Sm-Co permanent magnets are placed below the Ti target for better sputtering by argon. The Ti target is biased from –250V to – 350V and is sputtered by Ar plasma produced at discharge current of 2.5–4A and discharge potential of 60–90V. Steel substrates of dimensions 20x20x0.5mm3 were prepared with N2:Ar volumetric ratios of 1:3, 1:5 and 1:10. Ocular inspection of samples exhibit bright gold color associated with TiN. XRD characterization confirmed the effective TiN synthesis as all samples exhibit the (200) and (311) peaks of TiN and the non-stoichiometric Ti2N (220) facet. Cross-sectional SEM results showed increase in the TiN deposition rate of up to 0.35μm/min. This doubles what was previously obtained [1]. Scanning electron micrograph results give a comparative morphological picture of the samples. Vickers hardness results gave the largest hardness value of 21.094GPa.Keywords: Chemical vapor deposition, Magnetized sheetplasma, Thin-film synthesis, Titanium nitride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166497 Thiosulfate Leaching of the Auriferous Ore from Castromil Deposit: A Case Study
Authors: Rui Sousa, Aurora Futuro, António Fiúza
Abstract:
The exploitation of gold ore deposits is highly dependent on efficient mineral processing methods, although actual perspectives based on life-cycle assessment introduce difficulties that were unforeseen in a very recent past. Cyanidation is the most applied gold processing method, but the potential environmental problems derived from the usage of cyanide as leaching reagent led to a demand for alternative methods. Ammoniacal thiosulfate leaching is one of the most important alternatives to cyanidation. In this article, some experimental studies carried out in order to assess the feasibility of thiosulfate as a leaching agent for the ore from the unexploited Portuguese gold mine of Castromil. It became clear that the process depends on the concentrations of ammonia, thiosulfate and copper. Based on this fact, a few leaching tests were performed in order to assess the best reagent prescription, and also the effects of different combination of these concentrations. Higher thiosulfate concentrations cause the decrease of gold dissolution. Lower concentrations of ammonia require higher thiosulfate concentrations, and higher ammonia concentrations require lower thiosulfate concentrations. The addition of copper increases the gold dissolution ratio. Subsequently, some alternative operatory conditions were tested such as variations in temperature and in the solid/liquid ratio as well as the application of a pre-treatment before the leaching stage. Finally, thiosulfate leaching was compared to cyanidation. Thiosulfate leaching showed to be an important alternative, although a pre-treatment is required to increase the yield of the gold dissolution.
Keywords: Gold, leaching, pre-treatment, thiosulfate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165496 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws
Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun
Abstract:
Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment methods that modify such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.
Keywords: Lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332195 Modeling the Effect of Thermal Gradation on Steady-State Creep Behavior of Isotropic Rotating Disc Made of Functionally Graded Material
Authors: Tania Bose, Minto Rattan, Neeraj Chamoli
Abstract:
In this paper, an attempt has been made to study the effect of thermal gradation on the steady-state creep behavior of rotating isotropic disc made of functionally graded material using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate have been taken for analysis. The stress and strain rate distributions have been calculated for the discs rotating at elevated temperatures having thermal gradation. The material parameters of creep vary radially and have been estimated by regression fit of the available experimental data. Investigations for discs made up of linearly increasing particle content operating under linearly decreasing temperature from inner to outer radii have been done using von Mises’ yield criterion. The results are displayed and compared graphically in designer friendly format for the above said disc profile with the disc made of particle reinforced composite operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.Keywords: Creep, functionally graded isotropic material, steady-state, thermal gradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81294 Harmful Effect of Ambient Ozone on Growth and Productivity of Two Legume Crops Visia Faba, and Pisum sativum in Riyadh City, K.S.A.
Authors: Ibrahim A. Al-Muhaisen, Mohammad N. Al Ymemeni
Abstract:
Ozone (O3) is considered as one of the most phytotoxic pollutants with deleterious effects on living and non living components of Ecosystems. It reduces growth and yield of many crops as well as alters the physiology and crop quality. The present study described series of experiments to investigate the effects of ambient O3 at different locations with different ambient levels of O3 depending on proximity to pollutant source and ranged between 17 ppb/h in control experiment to 112 ppb/h in industrial area respectively. The ambient levels in other three locations (King Saud University botanical garden, King Fahd Rd, and Almanakh Garden) were 61,61,77 ppb/h respectively. Tow legume crops species (vicia vaba L ; and Pisum sativum) differ in their phenology and sensitivity were used. The results showed a significant negative effect to ozone on morphology, number of injured leaves, growth and productivity with a difference in the degree of response depending on the plant type. Visia Faba showed sensitivity to ozone to number and leaf area and the degree of injury leaves 3, pisum sativum show higher sensitivity for the gas for degree of injury 1,The relative growth rate and seed weight, it turns out there is no significant difference between the two plants in plant height and number of seeds.Keywords: Ozone, Legume crops, growth and production, Resistance, Riyadh city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150293 Cold Hardiness in Near Isogenic Lines of Bread Wheat (Triticum Aestivum L. em. Thell.)
Authors: Abolfazl Rashidi Asl, Siroos Mahfoozi, Mohammad Reza Bihamta
Abstract:
Low temperature (LT) is one of the most abiotic stresses causing loss of yield in wheat (T. aestivum). Four major genes in wheat (Triticum aestivum L.) with the dominant alleles designated Vrn–A1,Vrn–B1,Vrn–D1 and Vrn4, are known to have large effects on the vernalization response, but the effects on cold hardiness are ambiguous. Poor cold tolerance has restricted winter wheat production in regions of high winter stress [9]. It was known that nearly all wheat chromosomes [5] or at least 10 chromosomes of 21 chromosome pairs are important in winter hardiness [15]. The objective of present study was to clarify the role of each chromosome in cold tolerance. With this purpose we used 20 isogenic lines of wheat. In each one of these isogenic lines only a chromosome from ‘Bezostaya’ variety (a winter habit cultivar) was substituted to ‘Capple desprez’ variety. The plant materials were planted in controlled conditions with 20º C and 16 h day length in moderately cold areas of Iran at Karaj Agricultural Research Station in 2006-07 and the acclimation period was completed for about 4 weeks in a cold room with 4º C. The cold hardiness of these isogenic lines was measured by LT50 (the temperature in which 50% of the plants are killed by freezing stress).The experimental design was completely randomized block design (RCBD)with three replicates. The results showed that chromosome 5A had a major effect on freezing tolerance, and then chromosomes 1A and 4A had less effect on this trait. Further studies are essential to understanding the importance of each chromosome in controlling cold hardiness in wheat.Keywords: Cold hardiness, isogenic lines, LT50 , Triticum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140692 Neurogenic Potential of Clitoria ternatea Aqueous Root Extract–A Basis for Enhancing Learning and Memory
Authors: Kiranmai S.Rai
Abstract:
The neurogenic potential of many herbal extracts used in Indian medicine is hitherto unknown. Extracts derived from Clitoria ternatea Linn have been used in Indian Ayurvedic system of medicine as an ingredient of “Medhya rasayana", consumed for improving memory and longevity in humans and also in treatment of various neurological disorders. Our earlier experimental studies with oral intubation of Clitoria ternatea aqueous root extract (CTR) had shown significant enhancement of learning and memory in postnatal and young adult Wistar rats. The present study was designed to elucidate the in vitro effects of 200ng/ml of CTR on proliferation, differentiation and growth of anterior subventricular zone neural stem cells (aSVZ NSC-s) derived from prenatal and postnatal rat pups. Results show significant increase in proliferation and growth of neurospheres and increase in the yield of differentiated neurons of aSVZ neural precursor cells (aSVZNPC-s) at 7 days in vitro when treated with 200ng/ml of CTR as compared to age matched control. Results indicate that CTR has growth promoting neurogenic effect on aSVZ neural stem cells and their survival similar to neurotrophic factors like Survivin, Neuregulin 1, FGF-2, BDNF possibly the basis for enhanced learning and memory.Keywords: Anterior subventricular zone (aSVZ) neural stemcell, Clitoria ternatea, Learning and memory, Neurogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 302291 The Composition of Rice Bran Hydrolysate and Its Possibility to Use in the Ethanol Production by Zymomonas mobilis Biofilm
Authors: Tatsaporn Todhanakasem, Kamonchanok Areerat, Pornthap Thanonkeo, Roungdao KlinjapoandGlenn M. Young
Abstract:
Rice bran has been abandoned as agricultural waste for million tonnes per year in Thailand, therefore they have been proposed to be utilized as a rich carbon source in the production of bioethanol. Many toxic compounds are possibly released during the pretreatment of rice bran prior the fermentation process. This study aims to analyze on the availability of toxic compounds and the amount of glucose obtained from 2 different pretreatments using sulfuric acid and mixed cellulase enzymes (without and with delignification/ activated charcoal). The concentration of furfural, 5- hydroxymethyl furfural (5-HMF), levulinic acid, vanillin, syringaldehyde and4-hydroxybenzaldehyde (4-HB) and the percent acetic acid were found to be 0.0517 ± 0.049 mg/L, 0.032 ± 0.06 mg/L, 21074 ± 1685.62 mg/L, 126.265 ± 6.005 mg/L, 2.89 ± 0.30 mg/L, 0.37 ± 0.031mg/L and 0.72% under the pretreatment process without delignification/ activated charcoal treatment and 384.47 ± 99.02 g/L, 0.068 mg/L, 142107.62 ± 8664.6 mg/L, 0.19 mg/L, 5.43 ± 3.29 mg/L, 4.80 ± 0.76 mg/L and 0.254% under the pretreatment process with delignification/ activated charcoal treatment respectively. The presence of high concentration of acetic acid was found to impede the growth of Zymomonas mobilis strain TISTR 551 despite the present of high concentration of levulinic acid. Z. mobilis strain TISTR 551 was found to produce 8.96 ± 4.06 g/L of ethanol under 4 days fementation period in biofilm stage in which represented 40% theoretical yield.
Keywords: Rice bran, Zymomonas mobilis, biofilm, ethanol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272090 Estimation of the Park-Ang Damage Index for Floating Column Building with Infill Wall
Authors: Susanta Banerjee, Sanjaya Kumar Patro
Abstract:
Buildings with floating column are highly undesirable built in seismically active areas. Many urban multi-storey buildings today have floating column buildings which are adopted to accommodate parking at ground floor or reception lobbies in the first storey. The earthquake forces developed at different floor levels in a building need to be brought down along the height to the ground by the shortest path; any deviation or discontinuity in this load transfer path results in poor performance of the building. Floating column buildings are severely damaged during earthquake. Damage on this structure can be reduce by taking the effect of infill wall. This paper presents the effect of stiffness of infill wall to the damage occurred in floating column building when ground shakes. Modelling and analysis are carried out by non linear analysis programme IDARC-2D. Damage occurred in beams, columns, storey are studied by formulating modified Park & Ang model to evaluate damage indices. Overall structural damage indices in buildings due to shaking of ground are also obtained. Dynamic response parameters i.e. lateral floor displacement, storey drift, time period, base shear of buildings are obtained and results are compared with the ordinary moment resisting frame buildings. Formation of cracks, yield, plastic hinge, are also observed during analysis.
Keywords: Floating column, Infill Wall, Park-Ang Damage Index, Damage State.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 311389 Orbit Determination Modeling with Graphical Demonstration
Authors: Assem M. F. Sallam, Ah. El-S. Makled
Abstract:
In this paper, there is an implementation, verification, and graphical demonstration of a software application, which can be used swiftly over different preliminary orbit determination methods. A passive orbit determination method is used in this study to determine the location of a satellite or a flying body. It is named a passive orbit determination because it depends on observation without the use of any aids (radio and laser) installed on satellite. In order to understand how these methods work and how their output is accurate when compared with available verification data, the built models help in knowing the different inputs used with each method. Output from the different orbit determination methods (Gibbs, Lambert, and Gauss) will be compared with each other and verified by the data obtained from Satellite Tool Kit (STK) application. A modified model including all of the orbit determination methods using the same input will be introduced to investigate different models output (orbital parameters) for the same input (azimuth, elevation, and time). Simulation software is implemented using MATLAB. A Graphical User Interface (GUI) application named OrDet is produced using the GUI of MATLAB. It includes all the available used inputs and it outputs the current Classical Orbital Elements (COE) of satellite under observation. Produced COE are then used to propagate for a complete revolution and plotted on a 3-D view. Modified model which uses an adapter to allow same input parameters, passes these parameters to the preliminary orbit determination methods under study. Result from all orbit determination methods yield exactly the same COE output, which shows the equality of concept in determination of satellite’s location, but with different numerical methods.
Keywords: Orbit determination, STK, MATLAB-GUI, satellite tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154988 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion
Authors: Krishnaiah Arkanti, Ramulu Malothu
Abstract:
The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.Keywords: Equal Channel Angular Extrusion, Severe Plastic Deformation, Copper, Mechanical Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166687 Methodology for Bioenergy Potential and Assessment for Energy Deployment in Rural Vhembe District Areas
Authors: Clement M. Matasane, Mohamed T. Kahn
Abstract:
Biomass resources such as animal waste, agricultural and acro-industrial residues, forestry and woodland waste, and industrial and municipal solid wastes provide alternative means to utilize its untapped potential for biomass/biofuel renewable energy systems. In addition, crop residues (i.e., grain, starch, and energy crops) are commonly available in the district and play an essential role in community farming activities. The remote sensing technology (mappings) and geographic information systems tool will be used to determine the biomass potential in the Vhembe District Municipality. The detailed assessment, estimation, and modeling in quantifying their distribution, abundance, and quality yield an effective and efficient use of their potential. This paper aims to examine the potential and prospects of deploying bioenergy systems in small or micro-systems in the district for community use and applications. This deployment of the biofuels/biomass systems will help communities for sustainable energy supply from their traditional energy use into innovative and suitable methods that improve their livelihood. The study demonstrates the potential applications of Geographical Information Systems (GIS) in spatial mapping analysis, evaluation, modeling, and decision support for easy access to renewable energy systems.
Keywords: Agricultural crops, waste materials, biomass potentials, bioenergy potentials, GIS mappings, environmental data, renewable energy deployment, sustainable energy supply.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33186 The Effect of Alkaline Treatment on Tensile Strength and Morphological Properties of Kenaf Fibres for Yarn Production
Authors: A. Khalina, K. Shaharuddin, M. S. Wahab, M. P. Saiman, H. A. Aisyah
Abstract:
This paper investigates the effect of alkali treatment and mechanical properties of kenaf (Hibiscus cannabinus) fibre for the development of yarn. Two different fibre sources are used for the yarn production. Kenaf fibres were treated with sodium hydroxide (NaOH) in the concentration of 3, 6, 9, and 12% prior to fibre opening process and tested for their tensile strength and Young’s modulus. Then, the selected fibres were introduced to fibre opener at three different opening processing parameters; namely, speed of roller feeder, small drum, and big drum. The diameter size, surface morphology, and fibre durability towards machine of the fibres were characterized. The results show that concentrations of NaOH used have greater effects on fibre mechanical properties. From this study, the tensile and modulus properties of the treated fibres for both types have improved significantly as compared to untreated fibres, especially at the optimum level of 6% NaOH. It is also interesting to highlight that 6% NaOH is the optimum concentration for the alkaline treatment. The untreated and treated fibres at 6% NaOH were then introduced to fibre opener, and it was found that the treated fibre produced higher fibre diameter with better surface morphology compared to the untreated fibre. Higher speed parameter during opening was found to produce higher yield of opened-kenaf fibres.Keywords: Alkaline treatment, Kenaf fibre, Tensile strength, Yarn production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121185 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana
Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta
Abstract:
Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.Keywords: Bioeconomy, lipids, microalgae, proteins, saccharides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90084 Differential Sensitivity of Nitrogen-Fixing, Filamentous Cyanobacterial Species to an Organochlorine Insecticide - 6, 7, 8, 9, 10, 10- Hexachloro-1, 5, 5a, 6, 9, 9a-Hexahydro-6, 9- Methano-2, 4, 3-Benzodioxathiepine-3-Oxide
Authors: Nirmal J.I. Kumar, Anubhuti A. Bora, Manmeet K. Amb
Abstract:
Application of pesticides in the paddy fields has deleterious effects on non-target organisms including cyanobacteria which are photosynthesizing and nitrogen fixing micro-organisms contributing significantly towards soil fertility and crop yield. Pesticide contamination in the paddy fields has manifested into a serious global environmental concern. To study the effect of one such pesticide, three cyanobacterial strains; Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica were selected for their stress responses to an Organochlorine insecticide - 6, 7, 8, 9, 10, 10-hexachloro-1, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 4, 3- benzodioxathiepine-3-oxide, with reference to their photosynthesic pigments-chlorophyll-a and carotenoids as well as accessory pigments-phycobiliproteins (phycocyanin, allophycocyanin and phycoerythrin), stress induced biochemical metabolites like carbohydrates, proteins, amino acids, phenols and enzymes-nitrate reductase, glutamine synthetase and succinate dehydrogenase. All the three cyanobacterial strains were adversely affected by the insecticide doses and inhibition was dose dependent. Reduction in photosynthetic and accessory pigments, metabolites, nitrogen fixing and respiratory enzymes of the test organisms were accompanied with an initial increase in their total protein at lower Organochlorine doses. On the other hand, increased amount of phenols in all the insecticide treated concentrations was indicative of stressed activities of the organisms.Keywords: biochemical metabolites, endosulfan, enzymes, pigments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210583 Microwave Assisted Solvent-Free Catalytic Transesterification of Glycerol to Glycerol Carbonate
Authors: Wai Keng Teng, Gek Cheng Ngoh, Rozita Yusoff, Mohamed Kheireddine Aroua, Joe Shen Heng
Abstract:
As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varying grades of glycerol, i.e. 70%, 86% and 99% purity, that is obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Amidst the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demonstrated itself as an energy efficient route by achieving 94.2% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.Keywords: Biodiesel, glycerol, glycerol carbonate, microwave irradiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 289882 Comparison of the Effects of Continuous Flow Microwave Pre-treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant
Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin
Abstract:
Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.
Keywords: Anaerobic digestion, biogas, microwave pre-treatment, sewage sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214681 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam
Authors: T. M. Agbede, A. O. Adekiya
Abstract:
Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.
Keywords: Cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139880 Efficient Microspore Isolation Methods for High Yield Embryoids and Regeneration in Rice (Oryza sativa L.)
Authors: S. M. Shahinul Islam, Israt Ara, Narendra Tuteja, Sreeramanan Subramaniam
Abstract:
Through anther and microspore culture methods, complete homozygous plants can be produced within a year as compared to the long inbreeding method. Isolated microspore culture is one of the most important techniques for rapid development of haploid plants. The efficiency of this method is influenced by several factors such as cultural conditions, growth regulators, plant media, pretreatments, physical and growth conditions of the donor plants, pollen isolation procedure, etc. The main purpose of this study was to improve the isolated microspore culture protocol in order to increase the efficiency of embryoids, its regeneration and reducing albinisms. Under this study we have tested mainly three different microspore isolation procedures by glass rod, homozeniger and by blending and found the efficiency on gametic embryogenesis. There are three types of media viz. washing, pre-culture and induction was used. The induction medium as AMC (modified MS) supplemented by 2, 4-D (2.5 mg/l), kinetin (0.5 mg/l) and higher amount of D-Manitol (90 g/l) instead of sucrose and two types of amino acids (L-glutamine and L-serine) were used. Out of three main microspore isolation procedure by homogenizer isolation (P4) showed best performance on ELS induction (177%) and green plantlets (104%) compared with other techniques. For all cases albinisims occurred but microspore isolation from excised anthers by glass rod and homogenizer showed lesser numbers of albino plants that was also one of the important findings in this study.
Keywords: Androgenesis, pretreatment, microspore culture, regeneration, albino plants, Oryza sativa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413279 Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production
Authors: M. A. Kassim, R. Potumarthi, A. Tanksale, S. C. Srivatsa, S. Bhattacharya
Abstract:
Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass.
Keywords: Microalgal biomass, enzymatic saccharification, biobutanol, fermentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 289678 Influence of Canola Oil and Lysine Supplementation Diets on Growth Performance and Fatty Acid Composition of Meat in Broiler Chicks
Authors: Ali Kiani, Seyed Davod. Sharifi, Shokoufeh Ghazanfari
Abstract:
A study was conducted to evaluate the effects of diets containing different levels of lysine and canola oil on growth performance and fatty acid composition of meat of broilers chicks. 240-day old Ross broiler chicks were used in a 3×2 factorial arrangement with canola oil (1, 3, and 5%) and lysine (recommended, and 25% more than recommended by Ross broiler manual) in completely randomized design with four replicates and 10 birds per each. The experimental diets were iso-caloric and iso-nitrogenous. Feed intake and body weight gain were recorded at the end of starter (10 d), grower (24 d) and finisher (42 d) periods, and feed conversion ratio was calculated. The results showed that the weight gain of chickens fed diets containing 5% canola oil were greater than those of birds fed on other diets (P<0.05). The dietary lysine had significant effect on feed intake and diets with 25% more than recommended, increased feed intake significantly (P<0.05). The canola oil×lysine interaction effects on performance were not significant. Among all treatment birds, those fed diets containing 5% canola oil had the highest meristic acid and oleic acid content in their meat. Broilers fed diets containing 3 or 5% canola oil possessed the higher content of linolenic acid and lower content of arachidonic acid in their meat (P<0.05). The results of the present experiment indicated that the diets containing canola oil (5%) and lysine at 25% higher than requirement, improve the growth performance, carcass and breast yield of broiler, and increase the accumulation of Omega-3 fatty acids in breast meat.Keywords: Broiler, canola oil, lysine, fatty acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115977 Treatment of Biowaste (Generated in Biodiesel Process) - A New Strategy for Green Environment and Horticulture Crop
Authors: Shivani Chaturvedi, Santosh Satya, S. K. Tiwari
Abstract:
Recent research on seeds of bio-diesel plants like Jatropha curcas, constituting 40-50% bio-crude oil indicates its potential as one of the most promising alternatives to conventional sources of energy. Also, limited studies on utilization of de-oiled cake have revealed that Jatropha bio-waste has good potential to be used as organic fertilizers produced via aerobic and anaerobic treatment. However, their commercial exploitation has not yet been possible. The present study aims at developing appropriate bio-processes and formulations utilizing Jatropha seed cake as organic fertilizer, for improving the growth of Polianthes tuberose L. (Tuberose). Pot experiments were carried out by growing tuberose plants on soil treated with composted formulations of Jatropha de-oiled cake, Farm Yard Manure (FYM) and inorganic fertilizers were also blended in soil. The treatment was carried out through soil amendment as well as foliar spray. The growth and morphological parameters were monitored for entire crop cycle. The growth Length and number of leaves, spike length, rachis length, number of bulb per plant and earliness of sprouting of bulb and yield enhancement were comparable to that achieved under inorganic fertilizer. Furthermore, performance of inorganic fertilizer also showed an improvement when blended with composted bio-waste. These findings would open new avenues for Jatropha based bio-wastes to be composted and used as organic fertilizers for commercial floriculture.Keywords: Organic fertilizer, Jaropha cake, Tuberose (Polianthes tuberosa L.).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178976 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite
Authors: Muhammad Shahid, Muhammad Mansoor
Abstract:
Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.
Keywords: Carbon nanotubes, induction melting, nanocomposite, strengthening mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149975 Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations
Authors: N. Abbas, S. Lagomarsino, S. Cattari
Abstract:
Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation limit and iso-uplift limits are constructed inside this domain. These limits give a prediction of the mechanisms activated for each combination of loads applied to the foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.
Keywords: Foundation uplift, Iso-uplift curves, Resistance domain, Soil yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217174 Blockchain for Decentralized Finance: Impact, Challenges and Remediation
Authors: Rishabh Garg
Abstract:
Blockchain technology can allow remote, untrusted parties in the banking and financial sector to reach consensus on the state of databases without the involvement of gatekeepers. Like a bookkeeper, it can manage all financial transactions including payments, settlements, fundraising, securities management, loans, credits and trade finance. It can outperform existing systems in terms of identity verification, asset transfers, peer-to-peer transfers, hedge funds, security and auditability. Blockchain-based decentralized finance (DeFi) is a new financial protocol. Being open and programmable, it enables various DeFi use-cases, including asset management, tokenization, tokenized derivatives, decentralized autonomous organizations, data analysis and valuation, payments, lending and borrowing, insurance, margin trading, prediction market, gambling and yield-farming, etc. In addition, it can ease financial transactions, cash-flow, use of programmable currency, no-loss lotteries, etc. This paper aims to assess the potential of decentralized finance by leveraging the blockchain-enabled Ethereum platform as an alternative to traditional finance. The study also aims to find out the impact of decentralized finance on prediction markets, quadratic funding and crowd-funding, together with the potential challenges and solutions associated with its implementation.
Keywords: Advance trading, crowd funding, exchange tokens, fund aggregation, margin trading, quadratic funding, smart contracts, streaming money, token derivatives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34173 The Effects of Sodium Chloride in the Formation of Size and Shape of Gold (Au)Nanoparticles by Microwave-Polyol Method for Mercury Adsorption
Authors: Mawarni F. Mohamad, Khairul S.N. Kamarudin, Nik N.F.N.M. Fathilah, Mohamad M. Salleh
Abstract:
Mercury is a natural occurring element and present in various concentrations in the environment. Due to its toxic effects, it is desirable to research mercury sensitive materials to adsorb mercury. This paper describes the preparation of Au nanoparticles for mercury adsorption by using a microwave (MW)-polyol method in the presence of three different Sodium Chloride (NaCl) concentrations (10, 20 and 30 mM). Mixtures of spherical, triangular, octahedral, decahedral particles and 1-D product were obtained using this rapid method. Sizes and shapes was found strongly depend on the concentrations of NaCl. Without NaCl concentration, spherical, triangular plates, octahedral, decahedral nanoparticles and 1D product were produced. At the lower NaCl concentration (10 mM), spherical, octahedral and decahedral nanoparticles were present, while spherical and decahedral nanoparticles were preferentially form by using 20 mM of NaCl concentration. Spherical, triangular plates, octahedral and decahedral nanoparticles were obtained at the highest NaCl concentration (30 mM). The amount of mercury adsorbed using 20 ppm mercury solution is the highest (67.5 %) for NaCl concentration of 30 mM. The high yield of polygonal particles will increase the mercury adsorption. In addition, the adsorption of mercury is also due to the sizes of the particles. The sizes of particles become smaller with increasing NaCl concentrations (size ranges, 5- 16 nm) than those synthesized without addition of NaCl (size ranges 11-32 nm). It is concluded that NaCl concentrations affects the formation of sizes and shapes of Au nanoparticles thus affects the mercury adsorption.Keywords: Adsorption, Au Nanoparticles, Mercury, SodiumChloride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 364372 The Expression of Lipoprotein Lipase Gene with Fat Accumulations and Serum Biochemical Levels in Betong (KU Line) and Broiler Chickens
Authors: W. Loongyai, N. Saengsawang, W. Danvilai, C. Kridtayopas, P. Sopannarath, C. Bunchasak
Abstract:
Betong chicken is a slow growing and a lean strain of chicken, while the rapid growth of broiler is accompanied by increased fat. We investigated the growth performance, fat accumulations, lipid serum biochemical levels and lipoprotein lipase (LPL) gene expression of female Betong (KU line) at the age of 4 and 6 weeks. A total of 80 female Betong chickens (KU line) and 80 female broiler chickens were reared under open system (each group had 4 replicates of 20 chicks per pen). The results showed that feed intake and average daily gain (ADG) of broiler chicken were significantly higher than Betong (KU line) (P < 0.01), while feed conversion ratio (FCR) of Betong (KU line) at week 6 were significantly lower than broiler chicken (P < 0.01) at 6 weeks. At 4 and 6 weeks, two birds per replicate were randomly selected and slaughtered. Carcass weight did not significantly differ between treatments; the percentage of abdominal fat and subcutaneous fat yield was higher in the broiler (P < 0.01) at 4 and 6 week. Total cholesterol and LDL level of broiler were higher than Betong (KU line) at 4 and 6 weeks (P < 0.05). Abdominal fat samples were collected for total RNA extraction. The cDNA was amplified using primers specific for LPL gene expression and analysed using real-time PCR. The results showed that the expression of LPL gene was not different when compared between Betong (KU line) and broiler chickens at the age of 4 and 6 weeks (P > 0.05). Our results indicated that broiler chickens had high growth rate and fat accumulation when compared with Betong (KU line) chickens, whereas LPL gene expression did not differ between breeds.
Keywords: Lipoprotein lipase gene, Betong (KU line), broiler, abdominal fat, gene expression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95871 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing
Authors: A. Nassef, S. Samy, W. H. El Garaihy
Abstract:
Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250°C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.
Keywords: Al-Mg-Si alloy, Equal channel angular pressing, Grain refinement, Severe plastic deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245