Search results for: error detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2676

Search results for: error detection

1926 Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell

Authors: Mahanijah Md Kamal., Dingli Yu

Abstract:

This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.

Keywords: Polymer electrolyte membrane fuel cell, radial basis function neural networks, fault detection, fault isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
1925 Verification of Protocol Design using UML - SMV

Authors: Prashanth C.M., K. Chandrashekar Shet

Abstract:

In recent past, the Unified Modeling Language (UML) has become the de facto industry standard for object-oriented modeling of the software systems. The syntax and semantics rich UML has encouraged industry to develop several supporting tools including those capable of generating deployable product (code) from the UML models. As a consequence, ensuring the correctness of the model/design has become challenging and extremely important task. In this paper, we present an approach for automatic verification of protocol model/design. As a case study, Session Initiation Protocol (SIP) design is verified for the property, “the CALLER will not converse with the CALLEE before the connection is established between them ". The SIP is modeled using UML statechart diagrams and the desired properties are expressed in temporal logic. Our prototype verifier “UML-SMV" is used to carry out the verification. We subjected an erroneous SIP model to the UML-SMV, the verifier could successfully detect the error (in 76.26ms) and generate the error trace.

Keywords: Unified Modeling Language, Statechart, Verification, Protocol Design, Model Checking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
1924 Identification of Reusable Software Modules in Function Oriented Software Systems using Neural Network Based Technique

Authors: Sonia Manhas, Parvinder S. Sandhu, Vinay Chopra, Nirvair Neeru

Abstract:

The cost of developing the software from scratch can be saved by identifying and extracting the reusable components from already developed and existing software systems or legacy systems [6]. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. We have used metric based approach for characterizing a software module. In this present work, the metrics McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component are used as input attributes to the different types of Neural Network system and reusability of the software component is calculated. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Keywords: Software reusability, Neural Networks, MAE, RMSE, Accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
1923 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System

Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya

Abstract:

The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.

Keywords: Earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
1922 A Nanosensor System Based On Disuccinimydyl–CYP2E1 for Amperometric Detection of the Anti-Tuberculosis Drug, Pyrazinamide

Authors: R. F. Ajayi, U. Sidwaba, U. Feleni, S. F. Douman, E. Nxusani, L. Wilson, C. Rassie, O. Tovide, P. G. L. Baker, S. L. Vilakazi, R. Tshikhudo, E. I. Iwuoha

Abstract:

Pyrazinamide (PZA) is among the first-line pro-drugs  in the tuberculosis (TB) combination chemotherapy used to treat  Mycobacterium tuberculosis. Numerous reports have suggested that  hepatotoxicity due to pyrazinamide in patients is due to inappropriate  dosing. It is, therefore necessary to develop sensitive and reliable  techniques for determining the PZA metabolic profile of diagnosed  patients promptly and at point-of-care. This study reports the  determination of PZA based on nanobiosensor systems developed  from disuccinimidyl octanedioate modified Cytochrome P450-2E1  (CYP2E1) electrodeposited on gold substrates derivatised with  (poly(8-anilino-1-napthalene sulphonic acid) PANSA/PVP-AgNPs  nanocomposites. The rapid and sensitive amperometric PZA  detection gave a dynamic linear range of 2µM to 16µM revealing a  limit of detection of 0.044µM and a sensitivity of 1.38µA/µM. The  Michaelis-Menten parameters; KM, KM app and IMAX were calculated to  be 6.0µM, 1.41µM and 1.51x10-6 A, respectively, indicating a  nanobiosensor suitable for use in serum.

Keywords: Cytochrome P450-2E1, Disuccinimidyl octanedioate, Pyrazinamide, Tuberculosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
1921 Binarization of Text Region based on Fuzzy Clustering and Histogram Distribution in Signboards

Authors: Jonghyun Park, Toan Nguyen Dinh, Gueesang Lee

Abstract:

In this paper, we present a novel approach to accurately detect text regions including shop name in signboard images with complex background for mobile system applications. The proposed method is based on the combination of text detection using edge profile and region segmentation using fuzzy c-means method. In the first step, we perform an elaborate canny edge operator to extract all possible object edges. Then, edge profile analysis with vertical and horizontal direction is performed on these edge pixels to detect potential text region existing shop name in a signboard. The edge profile and geometrical characteristics of each object contour are carefully examined to construct candidate text regions and classify the main text region from background. Finally, the fuzzy c-means algorithm is performed to segment and detected binarize text region. Experimental results show that our proposed method is robust in text detection with respect to different character size and color and can provide reliable text binarization result.

Keywords: Text detection, edge profile, signboard image, fuzzy clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
1920 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection

Authors: K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.

Keywords: Wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
1919 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building

Authors: Kittipob Kondee, Chutima Prommak

Abstract:

In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.

Keywords: Indoor positioning System, Optimization System design, Multi-Floor Building, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
1918 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid

Abstract:

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Keywords: Features extraction, image segmentation, medical images, tumour detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591
1917 Simulating Discrete Time Model Reference Adaptive Control System with Great Initial Error

Authors: Bubaker M. F. Bushofa, Abdel Hafez A. Azab

Abstract:

This article is based on the technique which is called Discrete Parameter Tracking (DPT). First introduced by A. A. Azab [8] which is applicable for less order reference model. The order of the reference model is (n-l) and n is the number of the adjustable parameters in the physical plant. The technique utilizes a modified gradient method [9] where the knowledge of the exact order of the nonadaptive system is not required, so, as to eliminate the identification problem. The applicability of the mentioned technique (DPT) was examined through the solution of several problems. This article introduces the solution of a third order system with three adjustable parameters, controlled according to second order reference model. The adjustable parameters have great initial error which represent condition. Computer simulations for the solution and analysis are provided to demonstrate the simplicity and feasibility of the technique.

Keywords: Adaptive Control System, Discrete Parameter Tracking, Discrete Time Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
1916 Optical Fiber Sensor for Detection of Carbon Nanotubes

Authors: C. I. L. Justino, A. C. Freitas, T. A. P. Rocha-Santos, A. C. Duarte

Abstract:

This work relates the development of an optical fiber (OF) sensor for the detection and quantification of single walled carbon nanotubes in aqueous solutions. The developed OF displays a compact design, it requires less expensive materials and equipment as well as low volume of sample (0.2 mL). This methodology was also validated by the comparison of its analytical performance with that of a standard methodology based on ultraviolet-visible spectroscopy. The developed OF sensor follows the general SDS calibration proposed for OF sensors as a more suitable calibration fitting compared with classical calibrations.

Keywords: Optical fiber sensor, single-walled carbon nanotubes, SDS calibration model, UV-Vis spectroscopy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
1915 Traffic Density Measurement by Automatic Detection of Vehicles Using Gradient Vectors from Aerial Images

Authors: Saman Ghaffarian, Ilgın Gökasar

Abstract:

This paper presents a new automatic vehicle detection method from very high resolution aerial images to measure traffic density. The proposed method starts by extracting road regions from image using road vector data. Then, the road image is divided into equal sections considering resolution of the images. Gradient vectors of the road image are computed from edge map of the corresponding image. Gradient vectors on the each boundary of the sections are divided where the gradient vectors significantly change their directions. Finally, number of vehicles in each section is carried out by calculating the standard deviation of the gradient vectors in each group and accepting the group as vehicle that has standard deviation above predefined threshold value. The proposed method was tested in four very high resolution aerial images acquired from Istanbul, Turkey which illustrate roads and vehicles with diverse characteristics. The results show the reliability of the proposed method in detecting vehicles by producing 86% overall F1 accuracy value.

Keywords: Aerial images, intelligent transportation systems, traffic density measurement, vehicle detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
1914 Digital Image Forensics: Discovering the History of Digital Images

Authors: Gurinder Singh, Kulbir Singh

Abstract:

Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.

Keywords: Computer forensics, multimedia forensics, image ballistics, camera source identification, forgery detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
1913 Application of Feed-Forward Neural Networks Autoregressive Models in Gross Domestic Product Prediction

Authors: Ε. Giovanis

Abstract:

In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer after the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model in the out-of-sample period. The idea behind this approach is to propose a parametric regression with weighted variables in order to test for the statistical significance and the magnitude of the estimated autoregressive coefficients and simultaneously to estimate the forecasts.

Keywords: Autoregressive model, Error back-propagation Feed-Forward neural networks, , Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
1912 RADAR Imaging to Develop an Enhanced Fog Vision System for Collision Avoidance

Authors: Saswata Chakraborty, R.P.Chatterjee, S. Majumder, Anup Kr. Bhattacharjee

Abstract:

The scattering effect of light in fog improves the difficulty in visibility thus introducing disturbances in transport facilities in urban or industrial areas causing fatal accidents or public harassments, therefore, developing an enhanced fog vision system with radio wave to improvise the way outs of these severe problems is really a big challenge for researchers. Series of experimental studies already been done and more are in progress to know the weather effect on radio frequencies for different ranges. According to Rayleigh scattering Law, the propagating wavelength should be greater than the diameter of the particle present in the penetrating medium. Direct wave RF signal thus have high chance of failure to work in such weather for detection of any object. Therefore an extensive study was required to find suitable region in the RF band that can help us in detecting objects with proper shape. This paper produces some results on object detection using 912 MHz band with successful detection of the persistence of any object coming under the trajectory of a vehicle navigating in indoor and outdoor environment. The developed images are finally transformed to video signal to enable continuous monitoring.

Keywords: RADAR Imaging, Fog vision system, Objectdetection, Jpeg to Mpeg conversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2882
1911 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yilmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

A quartz crystal microbalance (QCM) nanosensor was developed to detect lysozyme enzyme by functionalizing its gold surface with the attachment of poly(methacroyl-L-phenylalanine) (PMAPA) nanoparticles. PMAPA was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Hydrophobic QCM nanosensor was tested for real time detection of lysozyme enzyme from aqueous solution. The kinetic and affinity studies were determined by using lysozyme solutions with different concentrations. The responses related with mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties. 

 

Keywords: HIC, lysozyme, nanosensor, QCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
1910 Evaluation of Stormwater Quantity and Quality Control through Constructed Mini Wet Pond: A Case Study

Authors: Y. S. Liew, K. A. Puteh Ariffin, M. A. Mohd Nor

Abstract:

One of the Best Management Practices (BMPs) promoted in Urban Stormwater Management Manual for Malaysia (MSMA) published by the Department of Irrigation and Drainage (DID) in 2001 is through the construction of wet ponds in new development projects for water quantity and quality control. Therefore, this paper aims to demonstrate a case study on evaluation of a constructed mini wet pond located at Sekolah Rendah Kebangsaan Seksyen 2, Puchong, Selangor, Malaysia in both stormwater quantity and quality aspect particularly to reduce the peak discharge by temporary storing and gradual release of stormwater runoff from an outlet structure or other release mechanism. The evaluation technique will be using InfoWorks Collection System (CS) as the numerical modeling approach for water quantity aspect. Statistical test by comparing the correlation coefficient (R2), mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate the model in simulating the peak discharge changes. Results demonstrated that there will be a reduction in peak flow at 11 % to 15% and time to peak flow is slower by 5 minutes through a wet pond. For water quality aspect, a survey on biological indicator of water quality carried out depicts that the pond is within the range of rather clean to clean water with the score of 5.3. This study indicates that a constructed wet pond with wetland facilities is able to help in managing water quantity and stormwater generated pollution at source, towards achieving ecologically sustainable development in urban areas.

Keywords: Wet pond, Retention Facilities, Best Management Practices (BMP), Urban Stormwater Management Manual for Malaysia (MSMA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
1909 Performance of the Aptima® HIV-1 Quant Dx Assay on the Panther System

Authors: Siobhan O’Shea, Sangeetha Vijaysri Nair, Hee Cheol Kim, Charles Thomas Nugent, Cheuk Yan William Tong, Sam Douthwaite, Andrew Worlock

Abstract:

The Aptima® HIV-1 Quant Dx Assay is a fully automated assay on the Panther system. It is based on Transcription- Mediated Amplification and real time detection technologies. This assay is intended for monitoring HIV-1 viral load in plasma specimens and for the detection of HIV-1 in plasma and serum specimens. Nine-hundred and seventy nine specimens selected at random from routine testing at St Thomas’ Hospital, London were anonymised and used to compare the performance of the Aptima HIV-1 Quant Dx assay and Roche COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Two-hundred and thirty four specimens gave quantitative HIV-1 viral load results in both assays. The quantitative results reported by the Aptima Assay were comparable to those reported by the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 with a linear regression slope of 1.04 and an intercept on -0.097. The Aptima assay detected HIV-1 in more samples than the COBAS assay. This was not due to lack of specificity of the Aptima assay because this assay gave 99.83% specificity on testing plasma specimens from 600 HIV-1 negative individuals. To understand the reason for this higher detection rate a side-by-side comparison of low level panels made from the HIV-1 3rd international standard (NIBSC10/152) and clinical samples of various subtypes were tested in both assays. The Aptima assay was more sensitive than the COBAS assay. The good sensitivity, specificity and agreement with other commercial assays make the HIV-1 Quant Dx Assay appropriate for both viral load monitoring and detection of HIV-1 infections.

Keywords: HIV viral load, Aptima, Roche, Panther system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3220
1908 Detection of Black Holes in MANET Using Collaborative Watchdog with Fuzzy Logic

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

Mobile ad hoc network (MANET) is a self-configuring network of mobile node connected without wires. A Fuzzy Logic Based Collaborative watchdog approach is used to reduce the detection time of misbehaved nodes and increase the overall truthfulness. This methodology will increase the secure efficient routing by detecting the Black Holes attacks. The simulation results proved that this method improved the energy, reduced the delay and also improved the overall performance of the detecting black hole attacks in MANET.

Keywords: MANET, collaborative watchdog, fuzzy logic, AODV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
1907 Piezoelectric Transducer Modeling: with System Identification (SI) Method

Authors: Nora Taghavi, Ali Sadr

Abstract:

System identification is the process of creating models of dynamic process from input- output signals. The aim of system identification can be identified as “ to find a model with adjustable parameters and then to adjust them so that the predicted output matches the measured output". This paper presents a method of modeling and simulating with system identification to achieve the maximum fitness for transformation function. First by using optimized KLM equivalent circuit for PVDF piezoelectric transducer and assuming different inputs including: sinuside, step and sum of sinusides, get the outputs, then by using system identification toolbox in MATLAB, we estimate the transformation function from inputs and outputs resulted in last program. Then compare the fitness of transformation function resulted from using ARX,OE(Output- Error) and BJ(Box-Jenkins) models in system identification toolbox and primary transformation function form KLM equivalent circuit.

Keywords: PVDF modeling, ARX, BJ(Box-Jenkins), OE(Output-Error), System Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2751
1906 Copy-Move Image Forgery Detection in Virtual Electrostatic Field

Authors: Michael Zimba, Darlison Nyirenda

Abstract:

A novel copy-move image forgery, CMIF, detection method is proposed. The proposed method presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilized to extract robust features. The extracted features are invariant to additive noise, JPEG compression, and affine transformation. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. SATS is a better option than the common shift vector method because SATS is insensitive to affine transformation. Consequently, the proposed CMIF algorithm is not only fast but also more robust to attacks compared to the existing related CMIF algorithms. The experimental results show high detection rates, as high as 100% in some cases.

Keywords: Affine transformation, Radix sort, SATS, Virtual electrostatic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
1905 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems

Authors: N. Georgoulopoulos, A. Hatzopoulos, K. Karamitsios, K. Kotrotsios, A. I. Metsai

Abstract:

Current server systems are responsible for critical applications that run in different infrastructures, such as the cloud, physical machines, and virtual machines. A common challenge that these systems face are the various hardware faults that may occur due to the high load, among other reasons, which translates to errors resulting in malfunctions or even server downtime. The most important hardware parts, that are causing most of the errors, are the CPU, RAM, and the hard drive - HDD. In this work, we investigate selected CPU, RAM, and HDD errors, observed or simulated in kernel ring buffer log files from GNU/Linux servers. Moreover, a severity characterization is given for each error type. Understanding these errors is crucial for the efficient analysis of kernel logs that are usually utilized for monitoring servers and diagnosing faults. In addition, to support the previous analysis, we present possible ways of simulating hardware errors in RAM and HDD, aiming to facilitate the testing of methods for detecting and tackling the above issues in a server running on GNU/Linux.

Keywords: hardware errors, Kernel logs, GNU/Linux servers, RAM, HDD, CPU

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689
1904 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.

Keywords: Data science, fraud detection, machine learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
1903 Carbon-Based Electrodes for Parabens Detection

Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea

Abstract:

Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.

Keywords: Carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116
1902 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators

Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi

Abstract:

The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.

Keywords: Automatic bias control, optical fiber communication, optical modulation, optical devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 566
1901 Maximum Entropy Based Image Segmentation of Human Skin Lesion

Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam

Abstract:

Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.

Keywords: Shannon, Maximum entropy, Renyi, Tsallis entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
1900 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Das Gupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: Case based reasoning, Exudates, Retina image, Similarity based retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
1899 Analysis of Blind Decision Feedback Equalizer Convergence: Interest of a Soft Decision

Authors: S. Cherif, S. Marcos, M. Jaidane

Abstract:

In this paper the behavior of the decision feedback equalizers (DFEs) adapted by the decision-directed or the constant modulus blind algorithms is presented. An analysis of the error surface of the corresponding criterion cost functions is first developed. With the intention of avoiding the ill-convergence of the algorithm, the paper proposes to modify the shape of the cost function error surface by using a soft decision instead of the hard one. This was shown to reduce the influence of false decisions and to smooth the undesirable minima. Modified algorithms using the soft decision during a pseudo-training phase with an automatic switch to the properly tracking phase are then derived. Computer simulations show that these modified algorithms present better ability to avoid local minima than conventional ones.

Keywords: Blind DFEs, decision-directed algorithm, constant modulus algorithm, cost function analysis, convergence analysis, soft decision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
1898 The First Ground Track Maintenance Manoeuvre of THEOS Spacecraft

Authors: Pornthep Navakitkanok, Ammarin Pimnoo, Seksan Jaturat

Abstract:

THEOS is the first earth observation spacecraft of Thailand which was launched on the 1st October 2008 and is currently operated by GISTDA. The transfer phase has been performed by Astrium Flight Dynamics team leading to a hand over to GISTDA teams starting mid-October 2008. The THEOS spacecraft-s orbit is LEO and has the same repetitivity (14+5/26) as the SPOT spacecraft, i.e. the same altitude of 822 km but it has a different mean local solar time (LST). Ground track maintenance manoeuvres are performed to maintain the ground track within a predefined control band around the reference ground track and the band is ±40 km for THEOS spacecraft. This paper presents the first ground track maintenance manoeuvre of THEOS spacecraft and the detailed results. In addition, it also includes one and a half year of operation as seen by GISTDA operators. It finally describes the foreseenable activities for the next orbit control manoeuvre (OCM) preparation.

Keywords: Orbit Control Manoeuvre, Ground Track Error, Local Solar Time Error, LEO, THEOS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
1897 Capacity Optimization in Cooperative Cognitive Radio Networks

Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis

Abstract:

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

Keywords: Cooperative networks, normalized capacity, sensing time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880