Search results for: Thermal mathematical model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8780

Search results for: Thermal mathematical model.

8030 Impact Assessment of Air Pollution Stress on Plant Species through Biochemical Estimations

Authors: Govindaraju.M, Ganeshkumar.R.S, Suganthi.P, Muthukumaran.V.R, Visvanathan.P

Abstract:

The present study was conducted to investigate the response of plants exposed to lignite-based thermal power plant emission. For this purpose, five plant species were collected from 1.0 km distance (polluted site) and control plants were collected from 20.0 km distance (control site) to thermal power plant. The common tree species Cassia siamea Lamk., Polyalthia longifolia. Sonn, Acacia longifolia (Andrews) Wild., Azadirachta indica A.Juss, Ficus religiosa L. were selected as test plants. Photosynthetic pigments changes (chlorophyll a, chlorophyll b and carotenoids) and rubisco enzyme modifications were studied. Reduction was observed in the photosynthetic pigments of plants growing in polluted site and also large sub unit of the rubisco enzyme was degraded in Azadirachta indica A. Juss collected from polluted site.

Keywords: Air pollution, Lignite-based thermal power plant, Photosynthetic pigments, Rubisco enzyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3172
8029 TBC for Protection of Al Alloy Aerospace Component

Authors: P. Niranatlumpong, H. Koiprasert, C. Sukhonket, K. Ninon, N. Coompreedee

Abstract:

The use of a conventional air plasma-sprayed thermal barrier coating (TBC) and a porous, functionally graded TBC as a thermal insulator for Al7075 alloy was explored. A quench test at 1200°C employing fast heating and cooling rates was setup to represent a dynamic thermal condition of an aerospace component. During the test, coated samples were subjected the ambient temperature of 1200°C for a very short time. This was followed by a rapid drop in temperature resulting in cracking of the coatings. For the conventional TBC, it was found that the temperature of the Al7075 substrate decreases with the increase in the ZrO2 topcoat thickness. However, at the topcoat thickness of 1100 µm, large horizontal cracks can be observed in the topcoat and at the topcoat thickness of 1600 µm, the topcoat delaminate during cooling after the quench test. The porous, functionally graded TBC with 600 µm thick topcoat, on the other hand, was found to be as effective at reducing the substrate temperature as the conventional TBC with 1100 µm thick topcoat. The maximum substrate temperature is about 213°C for the former and 208°C for the latter when a heating rate of 38°C/s was used. When the quench tests were conducted with a faster heating rate of 128°C/s, the Al7075 substrate heat up faster with a reduction in the maximum substrate temperatures. The substrate temperatures dropped from 297 to 212°C for the conventional TBC and from 213 to 155°C for the porous TBC, both with 600 µm thick topcoat. Segmentation cracks were observed in both coating after the quench test.

Keywords: Thermal barrier coating, Al7075, porous TBC, Quenching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
8028 Effects of Superheating on Thermodynamic Performance of Organic Rankine Cycles

Authors: Kyoung Hoon Kim

Abstract:

Recently ORC(Organic Rankine Cycle) has attracted much attention due to its potential in reducing consumption of fossil fuels and its favorable characteristics to exploit low-grade heat sources. In this work thermodynamic performance of ORC with superheating of vapor is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the evaporating temperature and the turbine inlet temperature on the characteristics of the system such as maximum possible work extraction from the given source, volumetric flow rate per 1 kW of net work and quality of the working fluid at turbine exit as well as thermal and exergy efficiencies. Results show that for a given source the thermal efficiency increases with decrease of the superheating but exergy efficiency may have a maximum value with respect to the superheating of the working fluid. Results also show that in selection of working fluid it is required to consider various criteria of performance characteristics as well as thermal efficiency.

Keywords: organic Rankine cycle (ORC), low-grade energysource, Patel-Teja equation, thermodynamic performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2882
8027 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constrains. Therefore the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.

Keywords: Laser cleavage, controlled fracture, contact ball lens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
8026 Probabilistic Electrical Power Generation Modeling Using Decimal to Binary Conversion

Authors: Ahmed S. Al-Abdulwahab

Abstract:

Generation system reliability assessment is an important task which can be performed using deterministic or probabilistic techniques. The probabilistic approaches have significant advantages over the deterministic methods. However, more complicated modeling is required by the probabilistic approaches. Power generation model is a basic requirement for this assessment. One form of the generation models is the well known capacity outage probability table (COPT). Different analytical techniques have been used to construct the COPT. These approaches require considerable mathematical modeling of the generating units. The unit-s models are combined to build the COPT which will add more burdens on the process of creating the COPT. Decimal to Binary Conversion (DBC) technique is widely and commonly applied in electronic systems and computing This paper proposes a novel utilization of the DBC to create the COPT without engaging in analytical modeling or time consuming simulations. The simple binary representation , “0 " and “1 " is used to model the states o f generating units. The proposed technique is proven to be an effective approach to build the generation model.

Keywords: Decimal to Binary, generation, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
8025 Flow Regime Characterization in a Diseased Artery Model

Authors: Anis S. Shuib, Peter R. Hoskins, William J. Easson

Abstract:

Cardiovascular disease mostly in the form of atherosclerosis is responsible for 30% of all world deaths amounting to 17 million people per year. Atherosclerosis is due to the formation of plaque. The fatty plaque may be at risk of rupture, leading typically to stroke and heart attack. The plaque is usually associated with a high degree of lumen reduction, called a stenosis. The initiation and progression of the disease is strongly linked to the hemodynamic environment near the vessel wall. The aim of this study is to validate the flow of blood mimic through an arterial stenosis model with computational fluid dynamics (CFD) package. In experiment, an axisymmetric model constructed consists of contraction and expansion region that follow a mathematical form of cosine function. A 30% diameter reduction was used in this study. Particle image velocimetry (PIV) was used to characterize the flow. The fluid consists of rigid spherical particles suspended in waterglycerol- NaCl mixture. The particles with 20 μm diameter were selected to follow the flow of fluid. The flow at Re=155, 270 and 390 were investigated. The experimental result is compared with FLUENT simulated flow that account for viscous laminar flow model. The results suggest that laminar flow model was sufficient to predict flow velocity at the inlet but the velocity at stenosis throat at Re =390 was overestimated. Hence, a transition to turbulent regime might have been developed at throat region as the flow rate increases.

Keywords: Atherosclerosis, Particle-laden flow, Particle imagevelocimetry, Stenosis artery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
8024 Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites

Authors: Marianna I. Triantou, Konstantina I. Stathi, Petroula A. Tarantili

Abstract:

In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.

Keywords: Acrylonitrile-butadiene-styrene terpolymer, blends, graphene, polypropylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3770
8023 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition

Authors: Hamed Djalal

Abstract:

The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.

Keywords: Forced convection, friction factor pressure drop thermal hydraulic analysis, vertical heated rectangular channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
8022 Increase in Solar Thermal Energy Storage by using a Hybrid Energy Storage System

Authors: Hassan Zohoor, Zaeem M. Moosavi

Abstract:

The intermittent nature of solar energy and the energy requirements of buildings necessitate the storage of thermal energy. In this paper a hybrid system of storing solar energy has been analyzed. Adding a LHS medium to a commercial solar water heater, the required energy for heating a small room was obtained in addition to preparing hot water. In other words, the suggested hybrid storage system consists of two tanks: a water tank as a SHS medium; and a paraffin tank as a LHS medium. A computing program was used to find the optimized time schedule of charging the storage tanks during each day, according to the solar radiation conditions. The results show that the use of such system can improve the capability of energy gathering comparing to the individual water storage tank during the cold months of the year. Of course, because of the solar radiation angles and shorten daylight in December & January, the performance will be the same as the simple solar water heaters (in the northern hemisphere). But the extra energy stored in November, February, March & April, can be useful for heating a small room for 3 hours during the cold days.

Keywords: Hybrid, Optimization, Solar thermal energy, Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
8021 Text Retrieval Relevance Feedback Techniques for Bag of Words Model in CBIR

Authors: Nhu Van NGUYEN, Jean-Marc OGIER, Salvatore TABBONE, Alain BOUCHER

Abstract:

The state-of-the-art Bag of Words model in Content- Based Image Retrieval has been used for years but the relevance feedback strategies for this model are not fully investigated. Inspired from text retrieval, the Bag of Words model has the ability to use the wealth of knowledge and practices available in text retrieval. We study and experiment the relevance feedback model in text retrieval for adapting it to image retrieval. The experiments show that the techniques from text retrieval give good results for image retrieval and that further improvements is possible.

Keywords: Relevance feedback, bag of words model, probabilistic model, vector space model, image retrieval

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
8020 Quality Evaluation of Ready to Eat Potatoes’ Produce in Flexible Packaging

Authors: Sandra Muizniece-Brasava, Aija Ruzaike, Lija Dukalska, Ilze Stokmane, Liene Strauta

Abstract:

Experiments have been carried out at the Latvia University of Agriculture Department of Food Technology. The aim of this work was to assess the effect of thermal treatment in flexible retort pouch packaging on the quality of potatoes’ produce during the storage time. Samples were evaluated immediately after retort thermal treatment; and following 1; 2; 3 and 4 storage months at the ambient temperature of +18±2ºC in vacuum packaging from polyamide/polyethylene (PA/PE) and aluminum/polyethylene (Al/PE) film pouches with barrier properties. Experimentally the quality of the potatoes’ produce in dry butter and mushroom dressings was characterized by measuring pH, hardness, color, microbiological properties and sensory evaluation. The sterilization was effective in protecting the produce from physical, chemical, and microbial quality degradation. According to the study of obtained data, it can be argued that the selected product processing technology and packaging materials could be applied to provide the safety and security during four-month storage period.

Keywords: Potatoes’ produce, shelf life, retort thermal treatment and packaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101
8019 A Simple Deterministic Model for the Spread of Leptospirosis in Thailand

Authors: W. Triampo, D. Baowan, I.M. Tang, N. Nuttavut, J. Wong-Ekkabut, G. Doungchawee

Abstract:

In this work, we consider a deterministic model for the transmission of leptospirosis which is currently spreading in the Thai population. The SIR model which incorporates the features of this disease is applied to the epidemiological data in Thailand. It is seen that the numerical solutions of the SIR equations are in good agreement with real empirical data. Further improvements are discussed.

Keywords: Leptospirosis, SIR Model, Deterministic model, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
8018 Simulation and Design of the Geometric Characteristics of the Oscillatory Thermal Cycler

Authors: Tse-Yu Hsieh, Jyh-Jian Chen

Abstract:

Since polymerase chain reaction (PCR) has been invented, it has emerged as a powerful tool in genetic analysis. The PCR products are closely linked with thermal cycles. Therefore, to reduce the reaction time and make temperature distribution uniform in the reaction chamber, a novel oscillatory thermal cycler is designed. The sample is placed in a fixed chamber, and three constant isothermal zones are established and lined in the system. The sample is oscillated and contacted with three different isothermal zones to complete thermal cycles. This study presents the design of the geometric characteristics of the chamber. The commercial software CFD-ACE+TM is utilized to investigate the influences of various materials, heating times, chamber volumes, and moving speed of the chamber on the temperature distributions inside the chamber. The chamber moves at a specific velocity and the boundary conditions with time variations are related to the moving speed. Whereas the chamber moves, the boundary is specified at the conditions of the convection or the uniform temperature. The user subroutines compiled by the FORTRAN language are used to make the numerical results realistically. Results show that the reaction chamber with a rectangular prism is heated on six faces; the effects of various moving speeds of the chamber on the temperature distributions are examined. Regarding to the temperature profiles and the standard deviation of the temperature at the Y-cut cross section, the non-uniform temperature inside chamber is found as the moving speed is larger than 0.01 m/s. By reducing the heating faces to four, the standard deviation of the temperature of the reaction chamber is under 1.4×10-3K with the range of velocities between 0.0001 m/s and 1 m/s. The nature convective boundary conditions are set at all boundaries while the chamber moves between two heaters, the effects of various moving velocities of the chamber on the temperature distributions are negligible at the assigned time duration.

Keywords: Polymerase chain reaction, oscillatory thermal cycler, standard deviation of temperature, nature convective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
8017 Infrared Face Recognition Using Distance Transforms

Authors: Moulay A. Akhloufi, Abdelhakim Bendada

Abstract:

In this work we present an efficient approach for face recognition in the infrared spectrum. In the proposed approach physiological features are extracted from thermal images in order to build a unique thermal faceprint. Then, a distance transform is used to get an invariant representation for face recognition. The obtained physiological features are related to the distribution of blood vessels under the face skin. This blood network is unique to each individual and can be used in infrared face recognition. The obtained results are promising and show the effectiveness of the proposed scheme.

Keywords: Face recognition, biometrics, infrared imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
8016 Thermal and Mechanical Properties of Modified CaCO3 /PP Nanocomposites

Authors: A. Buasri, N. Chaiyut, K. Borvornchettanuwat, N. Chantanachai, K. Thonglor

Abstract:

Inorganic nanoparticles filled polymer composites have extended their multiple functionalities to various applications, including mechanical reinforcement, gas barrier, dimensional stability, heat distortion temperature, flame-retardant, and thermal conductivity. Sodium stearate-modified calcium carbonate (CaCO3) nanoparticles were prepared using surface modification method. The results showed that sodium stearate attached to the surface of CaCO3 nanoparticles with the chemical bond. The effect of modified CaCO3 nanoparticles on thermal properties of polypropylene (PP) was studied by means of differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). It was found that CaCO3 significantly affected the crystallization temperature and crystallization degree of PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocomposites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the hardness increased by about 5%.

Keywords: Polypropylene Nanocomposites, Modified Calcium Carbonate, Sodium Stearate, Surface Treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4358
8015 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells

Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter

Abstract:

The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, there are some deficiencies in their operation, mainly those that use ethanol as a hydrogen source, that require a certain attention. Therefore, this research aimed to develop Nafion® composite membranes, mixing clay minerals, kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and, at the same time, to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, the protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, the Nafion® composite membranes were stable up to a temperature of 325ºC.

Keywords: Polymer-matrix composites (PMCs), Thermal properties, Nanoclay, Differential scanning calorimetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
8014 Performance Study of Scraped Surface Heat Exchanger with Helical Ribbons

Authors: S. Ali, M. Baccar

Abstract:

In this work, numerical simulations were carried out using a specific CFD code in order to study the performance of an innovative Scraped Surface Heat Exchanger (SSHE) with helical ribbons for Bingham fluids (threshold fluids). The resolution of three-dimensional form of the conservation equations (continuity, momentum and energy equations) was carried out basing on the finite volume method (FVM). After studying the effect of dimensionless numbers (axial Reynolds, rotational Reynolds and Oldroyd numbers) on the hydrodynamic and thermal behaviors within SSHE, a parametric study was developed, by varying the width of the helical ribbon, the clearance between the stator wall and the tip of the ribbon and the number of turns of the helical ribbon, in order to improve the heat transfer inside the exchanger. The effect of these geometrical numbers on the hydrodynamic and thermal behaviors was discussed.

Keywords: Heat transfer, helical ribbons, hydrodynamic behavior, parametric study, scraped surface heat exchanger, thermal behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
8013 Could Thermal Oceanic Hotspot Increase Climate Changes Activities in North Tropical Atlantic: Example of the 2005 Caribbean Coral Bleaching Hotspot and Hurricane Katrina Interaction

Authors: J- L. Siméon

Abstract:

This paper reviews recent studies and particularly the effects of Climate Change in the North Tropical Atlantic by studying atmospheric conditions that prevailed in 2005 ; Coral Bleaching HotSpot and Hurricane Katrina. In the aim to better understand and estimate the impact of the physical phenomenon, i.e. Thermal Oceanic HotSpot (TOHS), isotopic studies of δ18O and δ13C on marine animals from Guadeloupe (French Caribbean Island) were carried out. Recorded measures show Sea Surface Temperature (SST) up to 35°C in August which is much higher than data recorded by NOAA satellites 32°C. After having reviewed the process that led to the creation of Hurricane Katrina which hit New Orleans in August 29, 2005, it will be shown that the climatic conditions in the Caribbean from August to October 2005 have influenced Katrina evolution. This TOHS is a combined effect of various phenomenon which represent an additional factor to estimate future climate changes.

Keywords: Climate Change, Thermal Ocean HotSpot, Isotope, Hurricane, Connection, Uncertainty, Sea, Science.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
8012 Steady State Thermal Analysis and Design of a Cooling System in an AFPM Motor

Authors: K. Sarrafan, A. Darabi

Abstract:

In this paper, the steady-state temperature of a sample 500 KW two rotor one stator Non-slotted axial flux permanent magnet motor is calculated using the finite element simulator software package. Due to the high temperature in various parts of the machine, especially at stator winding, a cooling system is designed for the motor and the temperature is recalculated. The results show that the temperature obtained for the parts is within the permissible range.

Keywords: Axial Flux, Cooling System, Permanent Magnet, Thermal Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
8011 Impacts of Building Design Factors on Auckland School Energy Consumptions

Authors: Bin Su

Abstract:

This study focuses on the impact of school building design factors on winter extra energy consumption which mainly includes space heating, water heating and other appliances related to winter indoor thermal conditions. A number of Auckland schools were randomly selected for the study which introduces a method of using real monthly energy consumption data for a year to calculate winter extra energy data of school buildings. The study seeks to identify the relationships between winter extra energy data related to school building design data related to the main architectural features, building envelope and elements of the sample schools. The relationships can be used to estimate the approximate saving in winter extra energy consumption which would result from a changed design datum for future school development, and identify any major energy-efficient design problems. The relationships are also valuable for developing passive design guides for school energy efficiency.

Keywords: Building energy efficiency, Building thermal design, Building thermal performance, School building design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
8010 Efficient Large Numbers Karatsuba-Ofman Multiplier Designs for Embedded Systems

Authors: M.Machhout, M.Zeghid, W.El hadj youssef, B.Bouallegue, A.Baganne, R.Tourki

Abstract:

Long number multiplications (n ≥ 128-bit) are a primitive in most cryptosystems. They can be performed better by using Karatsuba-Ofman technique. This algorithm is easy to parallelize on workstation network and on distributed memory, and it-s known as the practical method of choice. Multiplying long numbers using Karatsuba-Ofman algorithm is fast but is highly recursive. In this paper, we propose different designs of implementing Karatsuba-Ofman multiplier. A mixture of sequential and combinational system design techniques involving pipelining is applied to our proposed designs. Multiplying large numbers can be adapted flexibly to time, area and power criteria. Computationally and occupation constrained in embedded systems such as: smart cards, mobile phones..., multiplication of finite field elements can be achieved more efficiently. The proposed designs are compared to other existing techniques. Mathematical models (Area (n), Delay (n)) of our proposed designs are also elaborated and evaluated on different FPGAs devices.

Keywords: finite field, Karatsuba-Ofman, long numbers, multiplication, mathematical model, recursivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2518
8009 An Image Matching Method for Digital Images Using Morphological Approach

Authors: Pinaki Pratim Acharjya, Dibyendu Ghoshal

Abstract:

Image matching methods play a key role in deciding correspondence between two image scenes. This paper presents a method for the matching of digital images using mathematical morphology. The proposed method has been applied to real life images. The matching process has shown successful and promising results.

Keywords: Digital image, gradients, image matching, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
8008 A Simple Approach of Three phase Distribution System Modeling for Power Flow Calculations

Authors: J. B. V. Subrahmanyam, C. Radhakrishna

Abstract:

This paper presents a simple three phase power flow method for solution of three-phase unbalanced radial distribution system (RDN) with voltage dependent loads. It solves a simple algebraic recursive expression of voltage magnitude, and all the data are stored in vector form. The algorithm uses basic principles of circuit theory and can be easily understood. Mutual coupling between the phases has been included in the mathematical model. The proposed algorithm has been tested with several unbalanced radial distribution networks and the results are presented in the article. 8- bus and IEEE 13 bus unbalanced radial distribution system results are in agreements with the literature and show that the proposed model is valid and reliable.

Keywords: radial distribution networks, load flow, circuitmodel, three-phase four-wire, unbalance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3982
8007 Direct Measurement of Electromagnetic Thrust of Electrodeless Helicon Plasma Thruster Using Magnetic Nozzle

Authors: Takahiro Nakamura, Kenji Takahashi, Hiroyuki Nishida, Shunjiro Shinohara, Takeshi Matsuoka, Ikkoh Funaki, Takao Tanikawa, Tohru Hada

Abstract:

In order to realize long-lived electric propulsion systems, we have been investigating an electrodeless plasma thruster. In our concept, a helicon plasma is accelerated by the magnetic nozzle for the thrusts production. In addition, the electromagnetic thrust can be enhanced by the additional radio-frequency rotating electric field (REF) power in the magnetic nozzle. In this study, a direct measurement of the electromagnetic thrust and a probe measurement have been conducted using a laboratory model of the thruster under the condition without the REF power input. Fromthrust measurement, it is shown that the thruster produces a sub-milli-newton order electromagnetic thrust force without the additional REF power. The thrust force and the density jump are observed due to the discharge mode transition from the inductive coupled plasma to the helicon wave excited plasma. The thermal thrust is theoretically estimated, and the total thrust force, which is a sum of the electromagnetic and the thermal thrust force and specific impulse are calculated to be up to 650 μN (plasma production power of 400 W, Ar gas mass flow rate of 1.0 mg/s) and 210 s (plasma production power of 400 W, Ar gas mass flow rate of 0.2 mg/s), respectively.

Keywords: Electric propulsion, Helicon plasma, Lissajous acceleration, Thrust stand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
8006 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: Asymptotic Homogenization Method, Effective Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart Network Composite Structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
8005 An Exact Algorithm for Location–Transportation Problems in Humanitarian Relief

Authors: Chansiri Singhtaun

Abstract:

This paper proposes a mathematical model and examines the performance of an exact algorithm for a location– transportation problems in humanitarian relief. The model determines the number and location of distribution centers in a relief network, the amount of relief supplies to be stocked at each distribution center and the vehicles to take the supplies to meet the needs of disaster victims under capacity restriction, transportation and budgetary constraints. The computational experiments are conducted on the various sizes of problems that are generated. Branch and bound algorithm is applied for these problems. The results show that this algorithm can solve problem sizes of up to three candidate locations with five demand points and one candidate location with up to twenty demand points without premature termination.

Keywords: Disaster response, facility location, humanitarian relief, transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
8004 Mathematical Modelling of Single Phase Unity Power Factor Boost Converter

Authors: Sanjay L. Kurkute, Pradeep M. Patil, Kakasaheb C. Mohite

Abstract:

An optimal control strategy based on simple model, a single phase unity power factor boost converter is presented with an evaluation of first order differential equations. This paper presents an evaluation of single phase boost converter having power factor correction. The simple discrete model of boost converter is formed and optimal control is obtained, digital PI is adopted to adjust control error. The method of instantaneous current control is proposed in this paper for its good tracking performance of dynamic response. The simulation and experimental results verified our design.

Keywords: Single phase, boost converter, Power factor correction (PFC), Pulse Width Modulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3440
8003 A Computational Study of Very High Turbulent Flow and Heat Transfer Characteristics in Circular Duct with Hemispherical Inline Baffles

Authors: Dipak Sen, Rajdeep Ghosh

Abstract:

This paper presents a computational study of steady state three dimensional very high turbulent flow and heat transfer characteristics in a constant temperature-surfaced circular duct fitted with 900 hemispherical inline baffles. The computations are based on realizable k-ɛ model with standard wall function considering the finite volume method, and the SIMPLE algorithm has been implemented. Computational Study are carried out for Reynolds number, Re ranging from 80000 to 120000, Prandtl Number, Pr of 0.73, Pitch Ratios, PR of 1,2,3,4,5 based on the hydraulic diameter of the channel, hydrodynamic entry length, thermal entry length and the test section. Ansys Fluent 15.0 software has been used to solve the flow field. Study reveals that circular pipe having baffles has a higher Nusselt number and friction factor compared to the smooth circular pipe without baffles. Maximum Nusselt number and friction factor are obtained for the PR=5 and PR=1 respectively. Nusselt number increases while pitch ratio increases in the range of study; however, friction factor also decreases up to PR 3 and after which it becomes almost constant up to PR 5. Thermal enhancement factor increases with increasing pitch ratio but with slightly decreasing Reynolds number in the range of study and becomes almost constant at higher Reynolds number. The computational results reveal that optimum thermal enhancement factor of 900 inline hemispherical baffle is about 1.23 for pitch ratio 5 at Reynolds number 120000.It also shows that the optimum pitch ratio for which the baffles can be installed in such very high turbulent flows should be 5. Results show that pitch ratio and Reynolds number play an important role on both fluid flow and heat transfer characteristics.

Keywords: Friction factor, heat transfer, turbulent flow, circular duct, baffle, pitch ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
8002 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.

Keywords: Concrete, FEM, pavement, sensitivity, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
8001 Modeling and Design of MPPT Controller Using Stepped P&O Algorithm in Solar Photovoltaic System

Authors: R. Prakash, B. Meenakshipriya, R. Kumaravelan

Abstract:

This paper presents modeling and simulation of Grid Connected Photovoltaic (PV) system by using improved mathematical model. The model is used to study different parameter variations and effects on the PV array including operating temperature and solar irradiation level. In this paper stepped P&O algorithm is proposed for MPPT control. This algorithm will identify the suitable duty ratio in which the DC-DC converter should be operated to maximize the power output. Photo voltaic array with proposed stepped P&O-MPPT controller can operate in the maximum power point for the whole range of solar data (irradiance and temperature).

Keywords: Photovoltaic (PV), Maximum Power Point Tracking (MPPT), Boost converter, Stepped Perturb & Observe method (Stepped P&O).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4000