WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10480,
	  title     = {Simulation and Design of the Geometric Characteristics of the Oscillatory Thermal Cycler},
	  author    = {Tse-Yu Hsieh and  Jyh-Jian Chen},
	  country	= {},
	  institution	= {},
	  abstract     = {Since polymerase chain reaction (PCR) has been
invented, it has emerged as a powerful tool in genetic analysis. The
PCR products are closely linked with thermal cycles. Therefore, to
reduce the reaction time and make temperature distribution uniform in
the reaction chamber, a novel oscillatory thermal cycler is designed.
The sample is placed in a fixed chamber, and three constant isothermal
zones are established and lined in the system. The sample is oscillated
and contacted with three different isothermal zones to complete
thermal cycles. This study presents the design of the geometric
characteristics of the chamber. The commercial software
CFD-ACE+TM is utilized to investigate the influences of various
materials, heating times, chamber volumes, and moving speed of the
chamber on the temperature distributions inside the chamber. The
chamber moves at a specific velocity and the boundary conditions
with time variations are related to the moving speed. Whereas the
chamber moves, the boundary is specified at the conditions of the
convection or the uniform temperature. The user subroutines compiled
by the FORTRAN language are used to make the numerical results
realistically. Results show that the reaction chamber with a rectangular
prism is heated on six faces; the effects of various moving speeds of
the chamber on the temperature distributions are examined. Regarding
to the temperature profiles and the standard deviation of the
temperature at the Y-cut cross section, the non-uniform temperature
inside chamber is found as the moving speed is larger than 0.01 m/s.
By reducing the heating faces to four, the standard deviation of the
temperature of the reaction chamber is under 1.4×10-3K with the range
of velocities between 0.0001 m/s and 1 m/s. The nature convective
boundary conditions are set at all boundaries while the chamber moves
between two heaters, the effects of various moving velocities of the
chamber on the temperature distributions are negligible at the assigned
time duration.},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {3},
	  number    = {5},
	  year      = {2009},
	  pages     = {237 - 245},
	  ee        = {https://publications.waset.org/pdf/10480},
	  url   	= {https://publications.waset.org/vol/29},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 29, 2009},
	}