Search results for: Natural gas fuel
1373 Measurement of Convective Heat Transfer from a Vertical Flat Plate Using Mach-Zehnder Interferometer with Wedge Fringe Setting
Authors: Divya Haridas, C. B. Sobhan
Abstract:
Laser interferometric methods have been utilized for the measurement of natural convection heat transfer from a heated vertical flat plate, in the investigation presented here. The study mainly aims at comparing two different fringe orientations in the wedge fringe setting of Mach-Zehnder interferometer (MZI), used for the measurements. The interference fringes are set in horizontal and vertical orientations with respect to the heated surface, and two different fringe analysis methods, namely the stepping method and the method proposed by Naylor and Duarte, are used to obtain the heat transfer coefficients. The experimental system is benchmarked with theoretical results, thus validating its reliability in heat transfer measurements. The interference fringe patterns are analyzed digitally using MATLAB 7 and MOTIC Plus softwares, which ensure improved efficiency in fringe analysis, hence reducing the errors associated with conventional fringe tracing. The work also discuss the relative merits and limitations of the two methods used.
Keywords: MZI, Natural Convection, Naylor Method, Vertical Flat Plate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31251372 The Antioxidant Capacity of Beverage Blends Made from Cocoa, Zobo and Ginger
Authors: Folasade F. Awe, Tayo N. Fagbemi, Comfort F. Ajibola, Adebanjo A. Badejo
Abstract:
The antioxidant capability of beverage blends made from cocoa, zobo and ginger with standard antioxidant assay procedures was investigated. The DPPH (2,2-diphenyl-1- picrylhydrazyl) scavenging capacity ranged from 21.2-25.8% in comparison with GSH of 37.1%. The ferric reducing ability was highest in the zobo drink and lowest in ginger. The superoxide scavenging capacity was also highest in the zobo drink followed by the drink with alkalized cocoa. The metal chelating power decreased as the level of zobo in the blends decreases. The chelating power of zobo and ginger were significantly lower than the natural and alkalized cocoa. The 100% zobo drink inhibited linoleic acid till the fifth day while natural and alkalized cocoa as well as the blend with 50% alkalized cocoa inhibited linoleic acid greatly till the sixth day. The finding describes the potential health benefit of the phytochemical antioxidants of cocoa:zobo:ginger beverage blends.
Keywords: Antioxidant, cocoa, ginger, health benefit, zobo blend.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24511371 Numerical Investigation of Multiphase Flow in Pipelines
Authors: Gozel Judakova, Markus Bause
Abstract:
We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.Keywords: Discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, two-phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7901370 Overview of Risk Management in Electricity Markets Using Financial Derivatives
Authors: Aparna Viswanath
Abstract:
Electricity spot prices are highly volatile under optimal generation capacity scenarios due to factors such as nonstorability of electricity, peak demand at certain periods, generator outages, fuel uncertainty for renewable energy generators, huge investments and time needed for generation capacity expansion etc. As a result market participants are exposed to price and volume risk, which has led to the development of risk management practices. This paper provides an overview of risk management practices by market participants in electricity markets using financial derivatives.
Keywords: Financial Derivatives, Forward, Futures, Options, Risk Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29011369 MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone
Authors: A. Mahdy
Abstract:
In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles.Keywords: Tangent hyperbolic nanofluid, finite difference, non-similarity, isothermal cone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7841368 Determination of Moisture Content and Liquid Limit of Foundations Soils, using Microwave Radiation, in the Different Locations of Sulaimani Governorate, Kurdistan Region-Iraq
Authors: Heyam Daod
Abstract:
Soils are normally dried in either a convection oven or stove. Laboratory moisture content testing indicated that the typical drying durations for a convection oven were, 24 hours. The purpose of this study was to determine the accuracy and soil drying duration of both, moisture content and liquid limit using microwave radiation. The soils were tested with both, convection and microwave ovens. The convection oven was considered to produce the true values for both, natural moisture content and liquid limit of soils; it was, therefore, used as a basis for comparison for the results of the microwave ovens. The samples used in this study were obtained from different projects of Consulting Engineering Bureau of College of Engineering of Sulaimani University. These samples were collected from different locations and at the different depths and consist mostly of brown and light brown clay and silty clay. A total of 102 samples were prepared. 26 of them were tested for natural moisture determination, while the other 76 were used for liquid limits determination
Keywords: Fine-grained soils, liquid limit, microwave drying,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47011367 Environmental Accounting: A Conceptual Study of Indian Context
Authors: Pradip Kumar Das
Abstract:
As the entire world continues its rapid move towards industrialization, it has seriously threatened mankind’s ability to maintain an ecological balance. Geographical and natural forces have a significant influence on the location of industries. Industrialization is the foundation stone of the development of any country, while the unplanned industrialization and discharge of waste by industries is the cause of environmental pollution. There is growing degree of awareness and concern globally among nations about environmental degradation or pollution. Environmental resources endowed by the gift of nature and not manmade are invaluable natural resources of a country like India. Any developmental activity is directly related to natural and environmental resources. Economic development without environmental considerations brings about environmental crises and damages the quality of life of present, as well as future generation. As corporate sectors in the global market, especially in India, are becoming anxious about environmental degradation, naturally more and more emphasis will be ascribed to how environment-friendly the outcomes are. Maintaining accounts of such environmental and natural resources in the country has become more urgent. Moreover, international awareness and acceptance of the importance of environmental issues has motivated the development of a branch of accounting called “Environmental Accounting”. Environmental accounting attempts to detect and focus the resources consumed and the costs rendered by an industrial unit to the environment. For the sustainable development of mankind, a healthy environment is indispensable. Gradually, therefore, in many countries including India, environment matters are being given top most priority. Accounting and disclosure of environmental matters have been increasingly manifesting as an important dimension of corporate accounting and reporting practices. But, as conventional accounting deals with mainly non-living things, the formulation of valuation, and measurement and accounting techniques for incorporating environment-related matters in the corporate financial statement sometimes creates problems for the accountant. In the light of this situation, the conceptual analysis of the study is concerned with the rationale of environmental accounting on the economy and society as a whole, and focuses the failures of the traditional accounting system. A modest attempt has been made to throw light on the environmental awareness in developing nations like India and discuss the problems associated with the implementation of environmental accounting. The conceptual study also reflects that despite different anomalies, environmental accounting is becoming an increasing important aspect of the accounting agenda within the corporate sector in India. Lastly, a conclusion, along with recommendations, has been given to overcome the situation.Keywords: Environmental accounting, environmental degradation, environmental management, environmental resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37591366 Saving Energy through Scalable Architecture
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.
Keywords: Scalable Architectures, Sustainability, Application Design, Disruptive Technology, Machine Learning, Natural Language Processing, AI, Social Media Platform, Cloud Computing, Advanced Networking, Storage Devices, Advanced Monitoring, Metering Infrastructure, Climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591365 Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder
Authors: Avinash Chandra, R. P. Chhabra
Abstract:
Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number. The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number, . The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. The resulting flow and temperature fields are visualized in terms of the streamline and isotherm patterns in the proximity of the cylinder. The flow remains attached to the cylinder surface over the range of conditions spanned here except that for and ; at these conditions, a separated flow region is observed when the condition of the constant wall temperature is prescribed on the surface of the cylinder. The heat transfer characteristics are analyzed in terms of the local and average Nusselt numbers. The maximum value of the local Nusselt number always occurs at the corner points whereas it is found to be minimum at the rear stagnation point on the flat surface. Overall, the average Nusselt number increases with Grashof number and/ or Prandtl number in accordance with the scaling considerations. The numerical results are used to develop simple correlations as functions of Grashof and Prandtl number thereby enabling the interpolation of the present numerical results for the intermediate values of the Prandtl or Grashof numbers for both thermal boundary conditions.Keywords: Constant heat flux, Constant surface temperature, Grashof number, natural convection, Prandtl number, Semi-circular cylinder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34151364 Vibration of Functionally Graded Cylindrical Shells Under Effect Clamped-Free Boundary Conditions Using Hamilton's Principle
Authors: M.R. Isvandzibaei, M.R. Alinaghizadeh, A.H. Zaman
Abstract:
In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clamped-free boundary conditions
Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle, clamped supported.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301363 Effect of Eccentricity on Conjugate Natural Convection in Vertical Eccentric Annuli
Authors: A. Jamal, M. A. I. El-Shaarawi, E. M. A. Mokheimer
Abstract:
Combined conduction-free convection heat transfer in vertical eccentric annuli is numerically investigated using a finitedifference technique. Numerical results, representing the heat transfer parameters such as annulus walls temperature, heat flux, and heat absorbed in the developing region of the annulus, are presented for a Newtonian fluid of Prandtl number 0.7, fluid-annulus radius ratio 0.5, solid-fluid thermal conductivity ratio 10, inner and outer wall dimensionless thicknesses 0.1 and 0.2, respectively, and dimensionless eccentricities 0.1, 0.3, 0.5, and 0.7. The annulus walls are subjected to thermal boundary conditions, which are obtained by heating one wall isothermally whereas keeping the other wall at inlet fluid temperature. In the present paper, the annulus heights required to achieve thermal full development for prescribed eccentricities are obtained. Furthermore, the variation in the height of thermal full development as function of the geometrical parameter, i.e., eccentricity is also investigated.Keywords: Conjugate natural convection, eccentricity, heat transfer, vertical eccentric annuli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22221362 Vibration of Functionally Graded Cylindrical Shells under Effects Free-free and Clamed-clamped Boundary Conditions
Authors: M. R.Isvandzibaei, A.Jahani
Abstract:
In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free and clamped-clamped boundary conditions.
Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261361 Plasma Arc Burner for Pulverized Coal Combustion
Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava
Abstract:
Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.Keywords: Coal combustion, plasma arc, plasma torches, pulverized coal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12741360 Radiation Workers’ Occupational Doses: Are We Really Careful or Overconscious
Authors: Sajjad A. Memon, Sadaf T. Qureshi, Naeem A. Laghari, Noor M. Khuhro
Abstract:
The present study represents the occupational radiation doses received by selected workers of Nuclear Institute of Medicine and Radiotherapy (NIMRA) Jamshoro Pakistan and conducted to discuss about how we be careful and try to avoid make ourselves overconscious. Film badges with unique identification number were issued to radiation worker to detect occupational radiation doses. In this study, only 08 workers with high radiation doses were assessed amongst 35 radiation workers during the period of January 2012 to December 2012. The selected radiation workers’ occupational doses were according to designated work areas and in the range of 1.21 to 7.78 mSv (mili Sieveret) out of the annual dose limit of 20 mSv. By the comparison of different studies and earth’s HNBR (High Natural Background Radiation) locations’ doses, it is concluded that the worker’s high doses are of magnitude of HNBR Regions and were in the acceptable range of National and International regulatory bodies so we must not to show any type of overconsciousness but be careful in handling the radioactive sources.
Keywords: Natural background radiation, Occupational dose, Overconscious, Personal monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16711359 Investigation of the GFR2400 Reactivity Control System
Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban
Abstract:
The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiCcladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.
Keywords: Control rods design, GFR2400, hot spot, movable reflector, reactivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18081358 Bedouin Weaving Techniques: Source of Textile Innovation
Authors: Omaymah AlAzhari
Abstract:
Nomadic tribes have always had the need to relocate and build shelters, moving from one site to another in search of food, water, and natural resources. They are affected by weather and seasonal changes and consequently started innovating textiles to build better shelters. Their solutions came from the observation of their natural environment, material, and surroundings. ‘AlRahala’ Nomadic Bedouin tribes from the Middle East and North African region have used textiles as a fundamental architectural element in their tent structure, ‘Bayt AlShar’ (House of Hair). The nomadic tribe has innovated their textile to create a fabric that is more suited to change in climatic and weather conditions. They used sheep, goat, or camel hair to weave the textiles to make their shelters. The research is based on existing literature on the weaving technicalities used by these tribes, based on their available materials encountered during travel. To conclude how they create the traditional textiles and use in the tents are a rich source of information for designers to create innovative solutions of modern-day textiles and environmentally responsive products.
Keywords: AlRahala Nomadic Tribes, Bayt AlShar, tent structure, textile innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5601357 Sinusoidal Roughness Elements in a Square Cavity
Abstract:
Numerical studies were conducted using Lattice Boltzmann Method (LBM) to study the natural convection in a square cavity in the presence of roughness. An algorithm based on a single relaxation time Bhatnagar-Gross-Krook (BGK) model of Lattice Boltzmann Method (LBM) was developed. Roughness was introduced on both the hot and cold walls in the form of sinusoidal roughness elements. The study was conducted for a Newtonian fluid of Prandtl number (Pr) 1.0. The range of Ra number was explored from 10^3 to 10^6 in a laminar region. Thermal and hydrodynamic behavior of fluid was analyzed using a differentially heated square cavity with roughness elements present on both the hot and cold wall. Neumann boundary conditions were introduced on horizontal walls with vertical walls as isothermal. The roughness elements were at the same boundary condition as corresponding walls. Computational algorithm was validated against previous benchmark studies performed with different numerical methods, and a good agreement was found to exist. Results indicate that the maximum reduction in the average heat transfer was 16.66 percent at Ra number 10^5.
Keywords: Lattice Boltzmann Method Natural convection, Nusselt Number Rayleigh number, Roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21531356 Radiation Heat Transfer Effect in Solid Oxide Fuel Cell: Application of the Lattice Boltzmann Method
Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri
Abstract:
The radiation effect within the solid anode, electrolyte, and cathode SOFC layers problem has been investigated in this paper. Energy equation is solved by the Lattice Boltzmann method (LBM). The Rosseland method is used to model the radiative transfer in the electrodes. The Schuster-Schwarzschild method is used to model the radiative transfer in the electrolyte. Without radiative effect, the found results are in good agreement with those published. The obtained results show that the radiative effect can be neglected.
Keywords: SOFC, lattice Boltzmann method, conduction, radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24511355 Reduce of Fermentation Time in Composting Process by Using a Special Microbial Consortium
Authors: S.H. Mirdamadian, S.M. Khayam-Nekoui, H. Ghanavati
Abstract:
Composting is the process in which municipal solid waste (MSW) and other organic waste materials such as biosolids and manures are decomposed through the action of bacteria and other microorganisms into a stable granular material which, applied to land, as soil conditioner. Microorganisms, especially those that are able to degrade polymeric organic material have a key role in speed up this process. The aim of this study has been established to isolation of microorganisms with high ability to production extracellular enzymes for degradation of natural polymers that are exists in MSW for decreasing time of degradation phase. Our experimental study for isolation designed in two phases: in first phase we isolated degrading microorganism with selected media that consist a special natural polymer such as cellulose, starch, lipids and etc as sole source of carbon. In second phase we selected microorganism that had high degrading enzyme production with enzymatic assay for seed production. However, our findings in pilot scale have indicated that usage of this microbial consortium had high efficiency for decreasing degradation phase.Keywords: Biodegradation, Compost, Municipal Solid Waste, Waste Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21711354 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.
Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15121353 Evaluation on Mechanical Stabilities of Clay-Sand Mixtures Used as Engineered Barrier for Radioactive Waste Disposal
Authors: Ahmet E. Osmanlioglu
Abstract:
In this study, natural bentonite was used as natural clay material and samples were taken from the Kalecik district in Ankara. In this research, bentonite is the subject of an analysis from standpoint of assessing the basic properties of engineered barriers with respect to the buffer material. Bentonite and sand mixtures were prepared for tests. Some of clay minerals give relatively higher hydraulic conductivity and lower swelling pressure. Generally, hydraulic conductivity of these type clays is lower than <10-12 m/s. The hydraulic properties of clay-sand mixtures are evaluated to design engineered barrier specifications. Hydraulic conductivities of bentonite-sand mixture were found in the range of 1.2x10-10 to 9.3x10-10 m/s. Optimum B/S mixture ratio was determined as 35% in terms of hydraulic conductivity and mechanical stability. At the second stage of this study, all samples were compacted into cylindrical shape molds (diameter: 50 mm and length: 120 mm). The strength properties of compacted mixtures were better than the compacted bentonite. In addition, the larger content of the quartz sand in the mixture has the greater thermal conductivity.Keywords: Bentonite, hydraulic conductivity, clay, nuclear waste disposal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14201352 Feasibility Study of Potential and Economic of Rice Straw VSPP Power Plant in Thailand
Authors: Sansanee Sansiribhan, Anusorn Rattanathanaophat, Chirapan Nuengchaknin
Abstract:
The potential feasibility of a 9.5 MWe capacity rice straw power plant project in Thailand was studied by evaluating the rice straw resource. The result showed that Thailand had a high rice straw biomass potential at the provincial level, especially, the provinces in the central, northeastern and western Thailand, which could feasibly develop plants. The economic feasibility of project was also investigated. The financial feasibility is also evaluated based on two important factors in the project, i.e., NPV ≥ 0 and IRR ≥ 11%. It was found that the rice straw power plant project at 9.5 MWe was financially feasible with the cost of fuel in the range of 30.6-47.7 USD/t.
Keywords: Power plant, Project feasibility, Rice straw, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34751351 Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy
Authors: Lina Paola Orozco-Marín, Yuliet Montoya, John Bustamante
Abstract:
Ischemic events can culminate in acute myocardial infarction with irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Tissue engineering proposes therapeutic alternatives by using biomaterials to resemble the native extracellular medium combined with healthy and functional cells. This research focused on developing a natural thermosensitive hydrogel, its physical-chemical characterization and in vitro biocompatibility determination. Hydrogels’ morphological characterization was carried out through scanning electron microscopy and its chemical characterization by employing Infrared Spectroscopy technic. In addition, the biocompatibility was determined using fetal human ventricular cardiomyocytes cell line RL-14 and the MTT cytotoxicity test according to the ISO 10993-5 standard. Four biocompatible and thermosensitive hydrogels were obtained with a three-dimensional internal structure and two gelation times. The results show the potential of the hydrogel to increase the cell survival rate to the cardiac cell therapies under investigation and lay the foundations to continue with its characterization and biological evaluation both in vitro and in vivo models.
Keywords: cardiac cell therapy, cardiac ischemia, natural polymers, thermosensitive hydrogel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7501350 Experimental Investigation of the Effect of Hydrogen Manifold Injection on the Performance of Compression Ignition Engines
Authors: Haroun A.K. Shahad, Nabeel Abdul-Hadi
Abstract:
Experiments were carried out to evaluate the influence of the addition of hydrogen to the inlet air on the performance of a single cylinder direct injection diesel engine. Hydrogen was injected in the inlet manifold. The addition of hydrogen was done on energy replacement basis. It was found that the addition of hydrogen improves the combustion process due to superior combustion characteristics of hydrogen in comparison to conventional diesel fuels. It was also found that 10% energy replacement improves the engine thermal efficiency by about 40% and reduces the sfc by about 35% however the volumetric efficiency was reduced by about 35%.Keywords: Hydrogen, Blended fuel, Manifold injection , Performance , Combustion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21421349 Structural Health Monitoring of Buildings and Infrastructure
Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi
Abstract:
Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.
Keywords: Structural Health Monitoring, Natural Frequency, FFT analysis, Finite element model updating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24421348 Productivity and Energy Management in Desert Urban
Authors: Masoud Nasri, Rahele Hekmatpanah
Abstract:
Growing world population has fundamental impacts and often catastrophic on natural habitat. The immethodical consumption of energy, destruction of the forests and extinction of plant and animal species are the consequence of this experience. Urban sustainability and sustainable urban development, that is so spoken these days, should be considered as a strategy, goal and policy, beyond just considering environmental issues and protection. The desert-s climate has made a bunch of problems for its residents. Very hot and dry climate in summers of the Iranian desert areas, when there was no access to modern energy source and mechanical cooling systems in the past, made Iranian architects to design a natural ventilation system in their buildings. The structure, like a tower going upward the roof, besides its ornamental application and giving a beautiful view to the building, was used as a spontaneous ventilation system. In this paper, it has been tried to name the problems of the area and it-s inconvenience, then some answers has pointed out in order to solve the problems and as an alternative solution BADGIR (wind-catcher) has been introduced as a solution knowing that it has been playing a major role in dealing with the problems.Keywords: Productivity, Sustainable development, hot aridzones, climate design, BADGIR (wind-catcher)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16391347 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements
Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas
Abstract:
Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.
Keywords: Acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9901346 An Ontology Based Question Answering System on Software Test Document Domain
Authors: Meltem Serhatli, Ferda N. Alpaslan
Abstract:
Processing the data by computers and performing reasoning tasks is an important aim in Computer Science. Semantic Web is one step towards it. The use of ontologies to enhance the information by semantically is the current trend. Huge amount of domain specific, unstructured on-line data needs to be expressed in machine understandable and semantically searchable format. Currently users are often forced to search manually in the results returned by the keyword-based search services. They also want to use their native languages to express what they search. In this paper, an ontology-based automated question answering system on software test documents domain is presented. The system allows users to enter a question about the domain by means of natural language and returns exact answer of the questions. Conversion of the natural language question into the ontology based query is the challenging part of the system. To be able to achieve this, a new algorithm regarding free text to ontology based search engine query conversion is proposed. The algorithm is based on investigation of suitable question type and parsing the words of the question sentence.Keywords: Description Logics, ontology, question answering, reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21491345 Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate
Authors: S. Boudali, A. M. Soliman, B. Abdulsalam, K. Ayed, D. E. Kerdal, S. Poncet
Abstract:
This study investigates the potential of using crushed concrete as aggregates to produce green and sustainable concrete. Crushed concrete was sieved to powder fine recycled aggregate (PFRA) less than 80 µm and coarse recycled aggregates (CRA). Physical, mechanical, and microstructural properties for PFRA and CRA were evaluated. The effect of the additional rates of PFRA and CRA on strength development of recycled aggregate concrete (RAC) was investigated. Additionally, the characteristics of interfacial transition zone (ITZ) between cement paste and recycled aggregate were also examined. Results show that concrete mixtures made with 100% of CRA and 40% PFRA exhibited similar performance to that of the control mixture prepared with 100% natural aggregate (NA) and 40% natural pozzolan (NP). Moreover, concrete mixture incorporating recycled aggregate exhibited a slightly higher later compressive strength than that of the concrete with NA. This was confirmed by the very dense microstructure for concrete mixture incorporating recycled concrete aggregates compared to that of conventional concrete mixture.
Keywords: Compressive strength, recycled concrete aggregates, microstructure, interfacial transition zone, powder fine recycled aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12381344 Methodology for Developing an Intelligent Tutoring System Based on Marzano’s Taxonomy
Authors: Joaquin Navarro Perales, Ana Lidia Franzoni Velázquez, Francisco Cervantes Pérez
Abstract:
The Mexican educational system faces diverse challenges related with the quality and coverage of education. The development of Intelligent Tutoring Systems (ITS) may help to solve some of them by helping teachers to customize their classes according to the performance of the students in online courses. In this work, we propose the adaptation of a functional ITS based on Bloom’s taxonomy called Sistema de Apoyo Generalizado para la Enseñanza Individualizada (SAGE), to measure student’s metacognition and their emotional response based on Marzano’s taxonomy. The students and the system will share the control over the advance in the course, so they can improve their metacognitive skills. The system will not allow students to get access to subjects not mastered yet. The interaction between the system and the student will be implemented through Natural Language Processing techniques, thus avoiding the use of sensors to evaluate student’s response. The teacher will evaluate student’s knowledge utilization, which is equivalent to the last cognitive level in Marzano’s taxonomy.
Keywords: Intelligent tutoring systems, student modelling, metacognition, affective computing, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010