Search results for: Wireless Ad Hoc Networks
1497 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning
Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16851496 Neural Network Imputation in Complex Survey Design
Authors: Safaa R. Amer
Abstract:
Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design
Keywords: Complex survey, estimate, imputation, neural networks, variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19721495 Improved Wavelet Neural Networks for Early Cancer Diagnosis Using Clustering Algorithms
Authors: Zarita Zainuddin, Ong Pauline
Abstract:
Wavelet neural networks (WNNs) have emerged as a vital alternative to the vastly studied multilayer perceptrons (MLPs) since its first implementation. In this paper, we applied various clustering algorithms, namely, K-means (KM), Fuzzy C-means (FCM), symmetry-based K-means (SBKM), symmetry-based Fuzzy C-means (SBFCM) and modified point symmetry-based K-means (MPKM) clustering algorithms in choosing the translation parameter of a WNN. These modified WNNs are further applied to the heterogeneous cancer classification using benchmark microarray data and were compared against the conventional WNN with random initialization method. Experimental results showed that a WNN classifier with the MPKM algorithm is more precise than the conventional WNN as well as the WNNs with other clustering algorithms.
Keywords: Clustering, microarray, symmetry, wavelet neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161494 An Investigation into the Application of Artificial Neural Networks to the Prediction of Injuries in Sport
Authors: J. McCullagh, T. Whitfort
Abstract:
Artificial Neural Networks (ANNs) have been used successfully in many scientific, industrial and business domains as a method for extracting knowledge from vast amounts of data. However the use of ANN techniques in the sporting domain has been limited. In professional sport, data is stored on many aspects of teams, games, training and players. Sporting organisations have begun to realise that there is a wealth of untapped knowledge contained in the data and there is great interest in techniques to utilise this data. This study will use player data from the elite Australian Football League (AFL) competition to train and test ANNs with the aim to predict the onset of injuries. The results demonstrate that an accuracy of 82.9% was achieved by the ANNs’ predictions across all examples with 94.5% of all injuries correctly predicted. These initial findings suggest that ANNs may have the potential to assist sporting clubs in the prediction of injuries.Keywords: Artificial Neural Networks, data, injuries, sport
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28891493 Data-organization Before Learning Multi-Entity Bayesian Networks Structure
Authors: H. Bouhamed, A. Rebai, T. Lecroq, M. Jaoua
Abstract:
The objective of our work is to develop a new approach for discovering knowledge from a large mass of data, the result of applying this approach will be an expert system that will serve as diagnostic tools of a phenomenon related to a huge information system. We first recall the general problem of learning Bayesian network structure from data and suggest a solution for optimizing the complexity by using organizational and optimization methods of data. Afterward we proposed a new heuristic of learning a Multi-Entities Bayesian Networks structures. We have applied our approach to biological facts concerning hereditary complex illnesses where the literatures in biology identify the responsible variables for those diseases. Finally we conclude on the limits arched by this work.
Keywords: Data-organization, data-optimization, automatic knowledge discovery, Multi-Entities Bayesian networks, score merging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16111492 Effects of Distributed Generation on Voltage Profile for Reconfiguration of Distribution Networks
Authors: Mahdi Hayatdavudi, Ali Reza Rajabi, Mohammad Hassan Raouf, Mojtaba Saeedimoghadam, Amir Habibi
Abstract:
Generally, distributed generation units refer to small-scale electric power generators that produce electricity at a site close to the customer or an electric distribution system (in parallel mode). From the customers’ point of view, a potentially lower cost, higher service reliability, high power quality, increased energy efficiency, and energy independence can be the key points of a proper DG unit. Moreover, the use of renewable types of distributed generations such as wind, photovoltaic, geothermal or hydroelectric power can also provide significant environmental benefits. Therefore, it is of crucial importance to study their impacts on the distribution networks. A marked increase in Distributed Generation (DG), associated with medium voltage distribution networks, may be expected. Nowadays, distribution networks are planned for unidirectional power flows that are peculiar to passive systems, and voltage control is carried out exclusively by varying the tap position of the HV/MV transformer. This paper will compare different DG control methods and possible network reconfiguration aimed at assessing their effect on voltage profiles.
Keywords: Distribution Feeder Reconfiguration (DFR), Distributed Generator (DG), Voltage Profile, Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19561491 Cognitive Radio Spectrum Management
Authors: Swapnil Singhal, Santosh Kumar Singh
Abstract:
The emerging Cognitive Radio is combo of both the technologies i.e. Radio dynamics and software technology. It involve wireless system with efficient coding, designing, and making them artificial intelligent to take the decision according to the surrounding environment and adopt themselves accordingly, so as to deliver the best QoS. This is the breakthrough from fixed hardware and fixed utilization of the spectrum. This software-defined approach of research is centralized at user-definition and application driven model, various software method are used for the optimization of the wireless communication. This paper focused on the Spectrum allocation technique using genetic algorithm GA to evolve radio, represented by chromosomes. The chromosomes gene represents the adjustable parameters in given radio and by using GA, evolving over the generations, the optimized set of parameters are evolved, as per the requirement of user and availability of the spectrum, in our prototype the gene consist of 6 different parameters, and the best set of parameters are evolved according to the application need and availability of the spectrum holes and thus maintaining best QoS for user, simultaneously maintaining licensed user rights. The analyzing tool Matlab is used for the performance of the prototype.
Keywords: ASDR, Cognitive Radio, QoS, Spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20541490 Collaboration in Palliative Care Networks in Urban and Rural Regions of Switzerland
Authors: R. Schweighoffer, N. Nagy, E. Reeves, B. Liebig
Abstract:
Due to aging populations, the need for seamless palliative care provision is of central interest for western societies. An essential aspect of palliative care delivery is the quality of collaboration amongst palliative care providers. Therefore, the current research is based on Bainbridge’s conceptual framework, which provides an outline for the evaluation of palliative care provision. This study is the first one to investigate the predictive validity of spatial distribution on the quantity of interaction amongst various palliative care providers. Furthermore, based on the familiarity principle, we examine whether the extent of collaboration influences the perceived quality of collaboration among palliative care providers in urban versus rural areas of Switzerland. Based on a population-representative survey of Swiss palliative care providers, the results of the current study show that professionals in densely populated areas report higher absolute numbers of interactions and are more satisfied with their collaborative practice. This indicates that palliative care providers who work in urban areas are better embedded into networks than their counterparts in more rural areas. The findings are especially important, considering that efficient collaboration is a prerequisite to achieve satisfactory patient outcomes. Conclusively, measures should be taken to foster collaboration in weakly interconnected palliative care networks.Keywords: Collaboration, healthcare networks, palliative care, Switzerland.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14711489 Controllable Electrical Power Plug Adapters Made As A ZigBee Wireless Sensor Network
Authors: Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara
Abstract:
Using Internet communication, new home electronics have functions of monitoring and control from remote. However in many case these electronics work as standalone, and old electronics are not followed. Then, we developed the total remote system include not only new electronics but olds. This systems node is a adapter of electrical power plug that embed relay switch and some sensors, and these nodes communicate with each other. the system server was build on the Internet, and users access to this system from web browsers. To reduce the cost to set up of this system, communication between adapters are used ZigBee wireless network instead of wired LAN cable[3]. From measured RSSI(received signal strength indicator) information between each nodes, the system can estimate roughly adapters were mounted on which room, and where in the room. So also it reduces the cost of mapping nodes. Using this system, energy saving and house monitoring are expected.Keywords: outlet, remote monitor, remote control, mobile ad hocnetwork, sensor network, zigbee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20871488 Traffic Behaviour of VoIP in a Simulated Access Network
Authors: Jishu Das Gupta, Srecko Howard, Angela Howard
Abstract:
Insufficient Quality of Service (QoS) of Voice over Internet Protocol (VoIP) is a growing concern that has lead the need for research and study. In this paper we investigate the performance of VoIP and the impact of resource limitations on the performance of Access Networks. The impact of VoIP performance in Access Networks is particularly important in regions where Internet resources are limited and the cost of improving these resources is prohibitive. It is clear that perceived VoIP performance, as measured by mean opinion score [2] in experiments, where subjects are asked to rate communication quality, is determined by end-to-end delay on the communication path, delay variation, packet loss, echo, the coding algorithm in use and noise. These performance indicators can be measured and the affect in the Access Network can be estimated. This paper investigates the congestion in the Access Network to the overall performance of VoIP services with the presence of other substantial uses of internet and ways in which Access Networks can be designed to improve VoIP performance. Methods for analyzing the impact of the Access Network on VoIP performance will be surveyed and reviewed. This paper also considers some approaches for improving performance of VoIP by carrying out experiments using Network Simulator version 2 (NS2) software with a view to gaining a better understanding of the design of Access Networks.Keywords: Codec, DiffServ, Droptail, RED, VOIP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951487 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction
Authors: Raquel M. de Sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques
Abstract:
Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of back propagation of back propagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this caseiodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.Keywords: Artificial Neural Networks, Biodiesel, Iodine Value, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23801486 Dynamic TDMA Slot Reservation Protocol for QoS Provisioning in Cognitive Radio Ad Hoc Networks
Authors: S. M. Kamruzzaman
Abstract:
In this paper, we propose a dynamic TDMA slot reservation (DTSR) protocol for cognitive radio ad hoc networks. Quality of Service (QoS) guarantee plays a critically important role in such networks. We consider the problem of providing QoS guarantee to users as well as to maintain the most efficient use of scarce bandwidth resources. According to one hop neighboring information and the bandwidth requirement, our proposed protocol dynamically changes the frame length and the transmission schedule. A dynamic frame length expansion and shrinking scheme that controls the excessive increase of unassigned slots has been proposed. This method efficiently utilizes the channel bandwidth by assigning unused slots to new neighboring nodes and increasing the frame length when the number of slots in the frame is insufficient to support the neighboring nodes. It also shrinks the frame length when half of the slots in the frame of a node are empty. An efficient slot reservation protocol not only guarantees successful data transmissions without collisions but also enhance channel spatial reuse to maximize the system throughput. Our proposed scheme, which provides both QoS guarantee and efficient resource utilization, be employed to optimize the channel spatial reuse and maximize the system throughput. Extensive simulation results show that the proposed mechanism achieves desirable performance in multichannel multi-rate cognitive radio ad hoc networks.Keywords: TDMA, cognitive radio, ad hoc networks, QoSguarantee, dynamic frame length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26541485 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector
Authors: Ahmed Al-Adaileh, Souheil Khaddaj
Abstract:
Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.
Keywords: Smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7871484 Opportunistic Routing with Secure Coded Wireless Multicast Using MAS Approach
Authors: E. Golden Julie, S. Tamil Selvi, Y. Harold Robinson
Abstract:
Many Wireless Sensor Network (WSN) applications necessitate secure multicast services for the purpose of broadcasting delay sensitive data like video files and live telecast at fixed time-slot. This work provides a novel method to deal with end-to-end delay and drop rate of packets. Opportunistic Routing chooses a link based on the maximum probability of packet delivery ratio. Null Key Generation helps in authenticating packets to the receiver. Markov Decision Process based Adaptive Scheduling algorithm determines the time slot for packet transmission. Both theoretical analysis and simulation results show that the proposed protocol ensures better performance in terms of packet delivery ratio, average end-to-end delay and normalized routing overhead.
Keywords: Delay-sensitive data, Markovian Decision Process based Adaptive Scheduling, Opportunistic Routing, Digital Signature authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571483 Modeling and Simulation of Position Estimation of Switched Reluctance Motor with Artificial Neural Networks
Authors: Oguz Ustun, Erdal Bekiroglu
Abstract:
In the present study, position estimation of switched reluctance motor (SRM) has been achieved on the basis of the artificial neural networks (ANNs). The ANNs can estimate the rotor position without using an extra rotor position sensor by measuring the phase flux linkages and phase currents. Flux linkage-phase current-rotor position data set and supervised backpropagation learning algorithm are used in training of the ANN based position estimator. A 4-phase SRM have been used to verify the accuracy and feasibility of the proposed position estimator. Simulation results show that the proposed position estimator gives precise and accurate position estimations for both under the low and high level reference speeds of the SRM
Keywords: Artificial neural networks, modeling andsimulation, position observer, switched reluctance motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621482 MJPEG Real-Time Transmission in Industrial Environments Using a CBR Channel
Authors: J. Silvestre, L. Almeida, R. Marau, P. Pedreiras
Abstract:
Currently, there are many local area industrial networks that can give guaranteed bandwidth to synchronous traffic, particularly providing CBR channels (Constant Bit Rate), which allow improved bandwidth management. Some of such networks operate over Ethernet, delivering channels with enough capacity, specially with compressors, to integrate multimedia traffic in industrial monitoring and image processing applications with many sources. In these industrial environments where a low latency is an essential requirement, JPEG is an adequate compressing technique but it generates VBR traffic (Variable Bit Rate). Transmitting VBR traffic in CBR channels is inefficient and current solutions to this problem significantly increase the latency or further degrade the quality. In this paper an R(q) model is used which allows on-line calculation of the JPEG quantification factor. We obtained increased quality, a lower requirement for the CBR channel with reduced number of discarded frames along with better use of the channel bandwidth.Keywords: Industrial Networks, Multimedia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15941481 Packet Losses Interpretation in Mobile Internet
Authors: Hossam el-ddin Mostafa, Pavel Čičak
Abstract:
The mobile users with Laptops need to have an efficient access to i.e. their home personal data or to the Internet from any place in the world, regardless of their location or point of attachment, especially while roaming outside the home subnet. An efficient interpretation of packet losses problem that is encountered from this roaming is to the centric of all aspects in this work, to be over-highlighted. The main previous works, such as BER-systems, Amigos, and ns-2 implementation that are considered to be in conjunction with that problem under study are reviewed and discussed. Their drawbacks and limitations, of stopping only at monitoring, and not to provide an actual solution for eliminating or even restricting these losses, are mentioned. Besides that, the framework around which we built a Triple-R sequence as a costeffective solution to eliminate the packet losses and bridge the gap between subnets, an area that until now has been largely neglected, is presented. The results show that, in addition to the high bit error rate of wireless mobile networks, mainly the low efficiency of mobile-IP registration procedure is a direct cause of these packet losses. Furthermore, the output of packet losses interpretation resulted an illustrated triangle of the registration process. This triangle should be further researched and analyzed in our future work.Keywords: Amigos, BER-systems, ns-2 implementation, packetlosses, registration process, roaming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14711480 Power Line Carrier Equipment Supporting IP Traffic Transmission in the Enterprise Networks of Energy Companies
Authors: M. S. Anton Merkulov
Abstract:
This article discusses the questions concerning of creating small packet networks for energy companies with application of high voltage power line carrier equipment (PLC) with functionality of IP traffic transmission. The main idea is to create converged PLC links between substations and dispatching centers where packet data and voice are transmitted in one data flow. The article contents description of basic conception of the network, evaluation of voice traffic transmission parameters, and discussion of header compression techniques in relation to PLC links. The results of exploration show us, that convergent packet PLC links can be very useful in the construction of small packet networks between substations in remote locations, such as deposits or low populated areas.
Keywords: packet PLC, VoIP, time delay, packet traffic, overhead compression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21651479 Interpolation of Geofield Parameters
Authors: A. Pashayev, C. Ardil, R. Sadiqov
Abstract:
Various methods of geofield parameters restoration (by algebraic polynoms; filters; rational fractions; interpolation splines; geostatistical methods – kriging; search methods of nearest points – inverse distance, minimum curvature, local – polynomial interpolation; neural networks) have been analyzed and some possible mistakes arising during geofield surface modeling have been presented.
Keywords: interpolation methods, geofield parameters, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17041478 Development and Usability Evaluation of Platform Independent Mobile Learning Tool(M-LT)
Authors: Sahilu Wendeson Sahilu, Wan Fatimah Wan Ahmad, Nazleeni Samiha Haron
Abstract:
Mobile learning (M-learning) integrates mobile devices and wireless computing technology to enhance the current conventional learning system. However, there are constraints which are affecting the implementation of platform and device independent M-learning. The main aim of this research is to fulfill the following main objectives: to develop platform independent mobile learning tool (M-LT) for structured programming course, and evaluate its effectiveness and usability using ADDIE instructional design model (ISD) as M-LT life cycle. J2ME (Java 2 micro edition) and XML (Extensible Markup Language) were used to develop platform independent M-LT. It has two modules lecture materials and quizzes. This study used Quasi experimental design to measure effectiveness of the tool. Meanwhile, questionnaire is used to evaluate the usability of the tool. Finally, the results show that the system was effective and also usability evaluation was positive.Keywords: ADDIE, Conventional learning, ISD, J2ME, Mlearning, Quasi Experiment, Wireless Technology, XML
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17191477 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems
Authors: Semih Demir, Anil Celebi
Abstract:
Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.
Keywords: Clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14641476 Design of Compact Dual-Band Planar Antenna for WLAN Systems
Authors: Anil Kumar Pandey
Abstract:
A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.
Keywords: CPW fed antenna, dual-band, electromagnetic simulation, wireless local area network, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8151475 An Enhanced Associativity Based Routing with Fuzzy Based Trust to Mitigate Network Attacks
Authors: K. Geetha, P. Thangaraj
Abstract:
Mobile Ad Hoc Networks (MANETs) is a collection of mobile devices forming a communication network without infrastructure. MANET is vulnerable to security threats due to network’s limited security, dynamic topology, scalability and the lack of central management. The Quality of Service (QoS) routing in such networks is limited by network breakage caused by node mobility or nodes energy depletions. The impact of node mobility on trust establishment is considered and its use to propagate trust through a network is investigated in this paper. This work proposes an enhanced Associativity Based Routing (ABR) with Fuzzy based Trust (Fuzzy- ABR) routing protocol for MANET to improve QoS and to mitigate network attacks.Keywords: Mobile Ad hoc Networks (MANET), Associativity Based Routing (ABR), Fuzzy based Computed Trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25541474 Engagement of Young People in Social Networks: Awareness and Security
Authors: Lynette Drevin, Günther R. Drevin
Abstract:
Numerous threats have been identified when using social networks. The question is whether young people are aware of these negative impacts of online and mobile technologies. Will they identify threats when needed? Will they know where to get help? Students and school children were part of a survey where their behavior and use of Facebook and an instant messaging application - MXit were studied. This paper presents some of the results. It can be concluded that awareness on security and privacy issues should be raised. The benefit of doing such a survey is that it may help to direct educational efforts from a young age. In this way children – with their parents – can strive towards more secure behavior. Educators can focus their lessons towards the areas that need attention resulting in safer cyber interaction and ultimately more responsible online use.
Keywords: Facebook, Instant messaging, MXit, Privacy, Social networks Information Security awareness education, Trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27151473 Regularization of the Trajectories of Dynamical Systems by Adjusting Parameters
Authors: Helle Hein, Ülo Lepik
Abstract:
A gradient learning method to regulate the trajectories of some nonlinear chaotic systems is proposed. The method is motivated by the gradient descent learning algorithms for neural networks. It is based on two systems: dynamic optimization system and system for finding sensitivities. Numerical results of several examples are presented, which convincingly illustrate the efficiency of the method.Keywords: Chaos, Dynamical Systems, Learning, Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13661472 Investigation of Combined use of MFCC and LPC Features in Speech Recognition Systems
Authors: К. R. Aida–Zade, C. Ardil, S. S. Rustamov
Abstract:
Statement of the automatic speech recognition problem, the assignment of speech recognition and the application fields are shown in the paper. At the same time as Azerbaijan speech, the establishment principles of speech recognition system and the problems arising in the system are investigated. The computing algorithms of speech features, being the main part of speech recognition system, are analyzed. From this point of view, the determination algorithms of Mel Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC) coefficients expressing the basic speech features are developed. Combined use of cepstrals of MFCC and LPC in speech recognition system is suggested to improve the reliability of speech recognition system. To this end, the recognition system is divided into MFCC and LPC-based recognition subsystems. The training and recognition processes are realized in both subsystems separately, and recognition system gets the decision being the same results of each subsystems. This results in decrease of error rate during recognition. The training and recognition processes are realized by artificial neural networks in the automatic speech recognition system. The neural networks are trained by the conjugate gradient method. In the paper the problems observed by the number of speech features at training the neural networks of MFCC and LPC-based speech recognition subsystems are investigated. The variety of results of neural networks trained from different initial points in training process is analyzed. Methodology of combined use of neural networks trained from different initial points in speech recognition system is suggested to improve the reliability of recognition system and increase the recognition quality, and obtained practical results are shown.Keywords: Speech recognition, cepstral analysis, Voice activation detection algorithm, Mel Frequency Cepstral Coefficients, features of speech, Cepstral Mean Subtraction, neural networks, Linear Predictive Coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9131471 TFRank: An Evaluation of Users Importance with Fractal Views in Social Networks
Abstract:
One of research issues in social network analysis is to evaluate the position/importance of users in social networks. As the information diffusion in social network is evolving, it seems difficult to evaluate the importance of users using traditional approaches. In this paper, we propose an evaluation approach for user importance with fractal view in social networks. In this approach, the global importance (Fractal Importance) and the local importance (Topological Importance) of nodes are considered. The basic idea is that the bigger the product of fractal importance and topological importance of a node is, the more important of the node is. We devise the algorithm called TFRank corresponding to the proposed approach. Finally, we evaluate TFRank by experiments. Experimental results demonstrate our TFRank has the high correlations with PageRank algorithm and potential ranking algorithm, and it shows the effectiveness and advantages of our approach.Keywords: TFRank, Fractal Importance, Topological Importance, Social Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15131470 Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks
Authors: Francisco Aparisi, José Sanz
Abstract:
Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.
Keywords: Multivariate quality control, Artificial Intelligence, Neural Networks, Computer Applications
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25051469 Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods
Authors: Huihai Wu, Xiaohui Liu
Abstract:
Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.
Keywords: Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18861468 Improving Packet Latency of Video Sensor Networks
Authors: Arijit Ghosh, Tony Givargis
Abstract:
Video sensor networks operate on stringent requirements of latency. Packets have a deadline within which they have to be delivered. Violation of the deadline causes a packet to be treated as lost and the loss of packets ultimately affects the quality of the application. Network latency is typically a function of many interacting components. In this paper, we propose ways of reducing the forwarding latency of a packet at intermediate nodes. The forwarding latency is caused by a combination of processing delay and queueing delay. The former is incurred in order to determine the next hop in dynamic routing. We show that unless link failures in a very specific and unlikely pattern, a vast majority of these lookups are redundant. To counter this we propose source routing as the routing strategy. However, source routing suffers from issues related to scalability and being impervious to network dynamics. We propose solutions to counter these and show that source routing is definitely a viable option in practical sized video networks. We also propose a fast and fair packet scheduling algorithm that reduces queueing delay at the nodes. We support our claims through extensive simulation on realistic topologies with practical traffic loads and failure patterns.Keywords: Sensor networks, Packet latency, Network design, Networkperformance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557