Search results for: volume fraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33100

Search results for: volume fraction

32410 Modeling of Normal and Atherosclerotic Blood Vessels using Finite Element Methods and Artificial Neural Networks

Authors: K. Kamalanand, S. Srinivasan

Abstract:

Analysis of blood vessel mechanics in normal and diseased conditions is essential for disease research, medical device design and treatment planning. In this work, 3D finite element models of normal vessel and atherosclerotic vessel with 50% plaque deposition were developed. The developed models were meshed using finite number of tetrahedral elements. The developed models were simulated using actual blood pressure signals. Based on the transient analysis performed on the developed models, the parameters such as total displacement, strain energy density and entropy per unit volume were obtained. Further, the obtained parameters were used to develop artificial neural network models for analyzing normal and atherosclerotic blood vessels. In this paper, the objectives of the study, methodology and significant observations are presented.

Keywords: Blood vessel, atherosclerosis, finite element model, artificial neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
32409 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
32408 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module

Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey

Abstract:

This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.

Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205
32407 Air Quality in Sports Venues with Distinct Characteristics

Authors: C. A. Alves, A. I. Calvo, A. Castro, R. Fraile, M. Evtyugina, E. F. Bate-Epey

Abstract:

In July 2012, an indoor/outdoor monitoring programme was undertaken in two university sports facilities: a fronton and a gymnasium. Comfort parameters (temperature, relative humidity, CO and CO2) and total volatile organic compounds (VOCs) were continuously monitored. Concentrations of NO2, carbonyl compounds and individual VOCs were obtained. Low volume samplers were used to collect particulate matter (PM10). The minimum ventilation rates stipulated for acceptable indoor air quality were observed in both sports facilities. It was found that cleaning activities may have a large influence on the VOC levels. Acrolein was one of the most abundant carbonyl compounds, showing concentrations above the recommended limit. Formaldehyde was detected at levels lower than those commonly reported for other indoor environments. The PM10 concentrations obtained during the occupancy periods ranged between 38 and 43μgm-3 in the fronton and from 154 to 198μgm-3 in the gymnasium.

Keywords: Air exchange rates, carbonyls, gymnasiums, indoor air quality, PM10, VOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
32406 Sloshing-Induced Overflow Assessment of the Seismically-Isolated Nuclear Tanks

Authors: Kihyon Kwon, Hyun T. Park, Gil Y. Chung, Sang-Hoon Lee

Abstract:

This paper focuses on assessing sloshing-induced overflow of the seismically-isolated nuclear tanks based on Fluid-Structure Interaction (FSI) analysis. Typically, fluid motion in the seismically-isolated nuclear tank systems may be rather amplified and even overflowed under earthquake. Sloshing-induced overflow in those structures has to be reliably assessed and predicted since it can often cause critical damages to humans and environments. FSI analysis is herein performed to compute the total cumulative overflowed water volume more accurately, by coupling ANSYS with CFX for structural and fluid analyses, respectively. The approach is illustrated on a nuclear liquid storage tank, Spent Fuel Pool (SFP), forgiven conditions under consideration: different liquid levels, Peak Ground Accelerations (PGAs), and post earthquakes. 

Keywords: FSI analysis, seismically-isolated nuclear tank system, sloshing-induced overflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879
32405 Incremental Mining of Shocking Association Patterns

Authors: Eiad Yafi, Ahmed Sultan Al-Hegami, M. A. Alam, Ranjit Biswas

Abstract:

Association rules are an important problem in data mining. Massively increasing volume of data in real life databases has motivated researchers to design novel and incremental algorithms for association rules mining. In this paper, we propose an incremental association rules mining algorithm that integrates shocking interestingness criterion during the process of building the model. A new interesting measure called shocking measure is introduced. One of the main features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The incremental model that reflects the changing data and the user beliefs is attractive in order to make the over all KDD process more effective and efficient. We implemented the proposed approach and experiment it with some public datasets and found the results quite promising.

Keywords: Knowledge discovery in databases (KDD), Data mining, Incremental Association rules, Domain knowledge, Interestingness, Shocking rules (SHR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
32404 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk

Authors: Paras Ram, Vikas Kumar

Abstract:

An attempt has been made to study the effect of rotation on incompressible, electrically non-conducting ferrofluid in porous medium on Axi-symmetric steady flow over a rotating disk excluding thermal effects. Here, we solved the boundary layer equations with boundary conditions using Neuringer-Rosensweig model considering the z-axis as the axis of rotation. The non linear boundary layer equations involved in the problem are transformed to the non linear coupled ordinary differential equations by Karman's transformation and solved by power series approximations. Besides numerically calculating the velocity components and pressure for different values of porosity parameter with the variation of Karman's parameter we have also calculated the displacement thickness of boundary layer, the total volume flowing outward the z-axis and angle between wall and ferrofluid. The results for all above variables are obtained numerically and discussed graphically.

Keywords: Ferrofluid, magnetic field porous medium, rotating disk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
32403 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: Free surface flows, Breaking waves, Boundary layer, Wigley hull, Volume of fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3564
32402 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: Free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3303
32401 Evaluation of Baking Properties and Sensory Quality of Wheat-Cowpea Flour

Authors: Mohamed A. Ahmed, Lydia J. Campbell

Abstract:

The fortified of soft wheat flour with cowpea flour in bread making was investigated. The Soft wheat flour (SWF) was substituted by cowpea flour at levels of 5, 15 and 20%. The protein content of composite breads ranged from 6.1 – 9.9%. Significant difference was observed in moisture, protein and crude fibre contents of control (wheat bread) and composite bread at 5% addition of cowpea. Water absorption capacities of composite flours increased with increasing levels of cowpea flour in the blend. The specific loaf volume decreased significantly with increased cowpea content of blends. The overall acceptability of the 5% cowpea flour content of composite bread was not significantly different from the control (Soft Wheat-bread) but there is significantly different with increasing the levels of cowpea flour in the blend more than 5%.

Keywords: Cowpea flour, wheat flour, baking properties, sensory quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
32400 Arterial CO2 Pressure Drives Ventilation with a Time Delay during Recovery from an Impulse-like Exercise without Metabolic Acidosis

Authors: R. Afroundeh, T. Arimitsu, R. Yamanaka, C. S. Lian, T. Yunoki, T. Yano, K. Shirakawa

Abstract:

We investigated this hypothesis that arterial CO2 pressure (PaCO2) drives ventilation (V.E) with a time delay duringrecovery from short impulse-like exercise (10 s) with work load of 200 watts. V.E and end tidal CO2 pressure (PETCO2) were measured continuously during rest, warming up, exercise and recovery periods. PaCO2 was predicted (PaCO2 pre) from PETCO2 and tidal volume (VT). PETCO2 and PaCO2 pre peaked at 20 s of recovery. V.E increased and peaked at the end of exercise and then decreased during recovery; however, it peaked again at 30 s of recovery, which was 10 s later than the peak of PaCO2 pre. The relationship between V. E and PaCO2pre was not significant by using data of them obtained at the same time but was significant by using data of V.E obtained 10 s later for data of PaCO2 pre. The results support our hypothesis that PaCO2 drives V.E with a time delay.

Keywords: Arterial CO2 pressure, impulse-like exercise, time delay, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
32399 Effect of Butt Joint Distortion and Comparison Study on Ti/Al Dissimilar Metal Using Laser Beam Welding

Authors: K. Kalaiselvan, A. Elango

Abstract:

In general, it is desirable to finish the weld quickly, before a large volume of surrounding metal heats up and expands. The welding process used, type, welding current and speed of travel, thus, affect the degree of shrinkage and distortion of a weldment. The use of mechanized welding equipment reduces welding time, metal affected zone and consequently distortion. This article helps to define what weld distortion is and then provide a practical understanding of the causes of distortion, effects of shrinkage in butt joint welded assemblies using TI6AL4VA and Aluminium AA2024 alloy sheet. The beam offset position to the joint interface towards titanium and aluminium side. The factors affecting distortion during welding is also given. Test results reveal that welding speed is the significant parameter to decide the extent of distortion. Also welding from Al side reduces the distortion while Ti side increases the distortion.

Keywords: Nd:YAG Pulsed laser welding, Titanium/Aluminium thin sheet butt joint, distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
32398 Parametric Analysis on Hydrogen Production using Mixtures of Pure Cellulosic and Calcium Oxide

Authors: N.A. Rashidi, S. Yusup, M.M. Ahmad

Abstract:

As the fossil fuels kept on depleting, intense research in developing hydrogen (H2) as the alternative fuel has been done to cater our tremendous demand for fuel. The potential of H2 as the ultimate clean fuel differs with the fossil fuel that releases significant amounts of carbon dioxide (CO2) into the surrounding and leads to the global warming. The experimental work was carried out to study the production of H2 from palm kernel shell steam gasification at different variables such as heating rate, steam to biomass ratio and adsorbent to biomass ratio. Maximum H2 composition which is 61% (volume basis) was obtained at heating rate of 100oCmin-1, steam/biomass of 2:1 ratio, and adsorbent/biomass of 1:1 ratio. The commercial adsorbent had been modified by utilizing the alcoholwater mixture. Characteristics of both adsorbents were investigated and it is concluded that flowability and floodability of modified CaO is significantly improved.

Keywords: Biomass gasification, Calcium oxide, Carbon dioxide capture, Sorbent flowability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
32397 Assessing Traffic Calming Measures for Safe and Accessible Emergency Routes in Norrkoping City in Sweden

Authors: Ghazwan Al-Haji

Abstract:

Most accidents occur in urban areas, and the most related casualties are vulnerable road users (pedestrians and cyclists). The traffic calming measures (TCMs) are widely used and considered to be successful in reducing speed and traffic volume. However, TCMs create unwanted effects include: noise, emissions, energy consumption, vehicle delays and emergency response time (ERT). Different vertical and horizontal TCMs have been already applied nationally (Sweden) and internationally with different impacts. It is a big challenge among traffic engineers, planners, and policy-makers to choose and priorities the best TCMs to be implemented. This study will assess the existing guidelines for TCMs in relation to safety and ERT with focus on data from Norrkoping city in Sweden. The expected results will save lives, time, and money on particularly Swedish Roads. The study will also review newly technologies and how they can improve safety and reduce ERT.

Keywords: Traffic safety, traffic calming measures, speeding, emergency response time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
32396 Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method

Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang

Abstract:

Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.

Keywords: Chronic kidney disease, microfluidics, linear regression, VITROS analyzer, urinary albumin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
32395 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
32394 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure

Authors: T. Nozu, K. Hibi, T. Nishiie

Abstract:

This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.

Keywords: Deflagration, Large Eddy Simulation, Turbulent combustion, Vented enclosure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
32393 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.

Keywords: Bio-heat, Boussinesq, conduction, convection, eye.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
32392 A Hybrid Approach for Quantification of Novelty in Rule Discovery

Authors: Vasudha Bhatnagar, Ahmed Sultan Al-Hegami, Naveen Kumar

Abstract:

Rule Discovery is an important technique for mining knowledge from large databases. Use of objective measures for discovering interesting rules lead to another data mining problem, although of reduced complexity. Data mining researchers have studied subjective measures of interestingness to reduce the volume of discovered rules to ultimately improve the overall efficiency of KDD process. In this paper we study novelty of the discovered rules as a subjective measure of interestingness. We propose a hybrid approach that uses objective and subjective measures to quantify novelty of the discovered rules in terms of their deviations from the known rules. We analyze the types of deviation that can arise between two rules and categorize the discovered rules according to the user specified threshold. We implement the proposed framework and experiment with some public datasets. The experimental results are quite promising.

Keywords: Knowledge Discovery in Databases (KDD), Data Mining, Rule Discovery, Interestingness, Subjective Measures, Novelty Measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
32391 Analysis of Impact of Land Use Regulations against Urban Spatial Structure - Centering around Shiheung City

Authors: Chang-il Kang, Yoon-Hong Park, Tae-Hyun Kim, Yu Wann

Abstract:

In this paper, we analyzed the pattern of urban spatial structure of Siheung City that had been divided into two parts and presented alternative plans in order to get rid of these phenomena. Concerning patterns of urban spatial structure, we examined it through means of analyzing status of land use, population density and distribution of residence, status of distribution of main facilities, medical facilities, status of distribution of cultural facilities, distribution of land prices and traffic volume trends. The results of study revealed that status of facilities distribution and distribution of land prices, etc. were bisected by the surrounding area of former municipal office and the district of Sihwa, which were both regarded as one apex of the city divide, forming a duo-centric city. In order to get rid of this problem concerned with urban spatial structure that has been bisected, it is required that measures in order to expand facilities in Siheung City should be taken.

Keywords: Urban Spatial Structure, Duo-centric City, Siheung City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
32390 Effects of Adding Fibre on Strength and Permeability of Recycled Aggregate Concrete Containing Treated Coarse RCA

Authors: Sallehan Ismail, Mahyuddin Ramli

Abstract:

This paper presents the experiment results of investigating the effects of adding various types and proportions of fibre on mechanical strength and permeability characteristics of recycled aggregate concrete (RAC), which was produced with treated coarse recycled concrete aggregate (RCA). Two types of synthetic fibres (i.e., barchip and polypropylene fibre) with various volume fractions were added to the RAC, which was calculated by the weight of the cement. The hardened RAC properties such as compressive strength, flexural strength, ultrasonic pulse velocity, water absorption and total porosity at the curing ages of 7 and 28 days were evaluated and compared with the properties of the control specimens. Results indicate that the treated coarse RCA enhances the mechanical strength and permeability properties of RAC and adding barchip fibre further optimises the results. Adding 1.2% barchip fibre has the best effect on the mechanical strength performance of the RAC.

Keywords: Barchip fibre, polypropylene fibre, recycled aggregate concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
32389 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: Border of the universe, causality violation, perfect isolation, quantum jumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
32388 Transient Three Dimensional FE Modeling for Thermal Analysis of Pulsed Current Gas Tungsten Arc Welding of Aluminum Alloy

Authors: N. Karunakaran, V. Balasubramanian

Abstract:

This paper presents the results of a study aimed at establishing the temperature distribution during the welding of aluminum alloy plates by Pulsed Current Gas Tungsten Arc Welding (PCGTAW) and Constant Current Gas Tungsten Arc Welding (CCGTAW) processes. Pulsing of the GTA welding current influences the dimensions and solidification rate of the fused zone, it also reduces the weld pool volume hence a narrower bead. In this investigation, the base material considered was aluminum alloy AA 6351 T6, which is finding use in aircraft, automobile and high-speed train components. A finite element analysis was carried out using ANSYS, and the results of the FEA were compared with the experimental results. It is evident from the study that the finite element analysis using ANSYS can be effectively used to model PCGTAW process for finding temperature distribution.

Keywords: Gas tungsten arc welding, pulsed current, finite element analysis, thermal analysis, aluminum alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
32387 Pulse Oximeter Concept for Vascular Occlusion Test

Authors: Fatanah M. Suhaimi, J. Geoffrey Chase, Christopher G. Pretty, Rodney Elliott, Geoffrey M. Shaw

Abstract:

Microcirculatory dysfunction is very common in sepsis and may results in organ failure and increased risk of death. Analyzing oxygen utilization can potentially assess microcirculation function of an individual. In this study, a modified pulse oximeter is used to extract information signals due to absorption of red (R) and infrared (IR) light. IR and R signal are related to the overall blood volume and reduced hemoglobin, respectively. Differences between these two signals thus represent the amount of oxygenated hemoglobin. Avascular occlusion test has been conducted on healthy individuals to validate the pulse oximeter concept. In this test, both R and IR signals rapidly changed according to the occlusion process. The pulse oximeter concept presented is capable of extracting valuable information to assess microcirculation condition. Implementing this concept on ICU patients has the potential to aid sepsis diagnosis and provide more accurate tracking of patient state and sepsis status.

Keywords: Microcirculation, sepsis, sepsis diagnosis, oxygen extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
32386 Effect of COD Loading Rate on Hydrogen Production from Alcohol Wastewater

Authors: Patcharee Intanoo, Jittipan Chavadej, Sumaeth Chavadej

Abstract:

The objective of this study was to investigate hydrogen production from alcohol wastewater by anaerobic sequencing batch reactor (ASBR) under thermophillic operation. The ASBR unit used in this study had a liquid holding volume of 4 L and was operated at 6 cycles per day. The seed sludge taken from an upflow anaerobic sludge blanket unit treating the same wastewater was boiled at 95 °C for 15 min before being fed to the ASBR unit. The ASBR system was operated at different COD loading rates at a thermophillic temperature (55 °C), and controlled pH of 5.5. When the system was operated under optimum conditions (providing maximum hydrogen production performance) at a feed COD of 60 000 mg/l, and a COD loading rate of 68 kg/m3 d, the produced gas contained 43 % H2 content in the produced gas. Moreover, the hydrogen yield and the specific hydrogen production rate (SHPR) were 130 ml H2/g COD removed and 2100 ml H2/l d, respectively.

Keywords: Biohydrogen, Alcohol wastewater, Anaerobic sequencing batch reactor (ASBR), Thermophillic operation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
32385 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid

Authors: Cha’o-Kuang Chen, Ching-Chang Cho

Abstract:

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.

Keywords: Non-Newtonian fluid, Power-law fluid, Natural convection, Heat transfer enhancement, Cavity, Wavy wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
32384 Study on the Characteristics and Utilization of Sewage Sludge at Indah Water Konsortium (IWK) Sungai Udang, Melaka

Authors: Siti Noorain Roslan, Siti Salmi Ghazali, Norfadhlina Muhamed Asli

Abstract:

The volume of biosolids produced in Malaysia nowadays had increased proportionally to its population size. The end products from the waste treatments were mounting, thus inevitable that in the end the environment will be surrounded by the waste. This study was conducted to investigate the suitability of biosolids to be reused as fertilizer for non-food crop. By varying the concentration of biosolids applied onto the soil, growth of five ornamental plant samples were tested for eight consecutive weeks. The results show that the pH of the soil after the addition of biosolids ranges from 6.45 to 6.56 which is suitable for the plant growth. The soil samples that contains biosolid also show higher amount of macronutrients (N, P, K) and the heavy metals content are significantly increased in the plant however it does not exceed the guidelines drawn by the Environmental Protection Agency. It is also proven that there was only small significant different in the performance of plant growth between biosolids and commercial fertilizer. It can be seen that biosolids was able to perform just as well as commercial fertilizer.

Keywords: Biosolids, fertilizer, R. chinensis, waste sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4390
32383 An Attempt to Predict the Performances of a Rocket Thrust Chamber

Authors: A. Benarous, D. Karmed, R. Haoui, A. Liazid

Abstract:

The process for predicting the ballistic properties of a liquid rocket engine is based on the quantitative estimation of idealized performance deviations. In this aim, an equilibrium chemistry procedure is firstly developed and implemented in a Fortran routine. The thermodynamic formulation allows for the calculation of the theoretical performances of a rocket thrust chamber. In a second step, a computational fluid dynamic analysis of the turbulent reactive flow within the chamber is performed using a finite volume approach. The obtained values for the “quasi-real" performances account for both turbulent mixing and chemistryturbulence coupling. In the present work, emphasis is made on the combustion efficiency performance for which deviation is mainly due to radial gradients of static temperature and mixture ratio. Numerical values of the characteristic velocity are successfully compared with results from an industry-used code. The results are also confronted with the experimental data of a laboratory-scale rocket engine.

Keywords: JANAF methodology, Liquid rocket engine, Mascotte test-rig, Theoretical performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
32382 Mechanical Properties Enhancement of 66/34Mg-Alloy for Medical Application

Authors: S. O. Adeosun, O. I. Sekunowo, O. P. Gbenebor, W. A. Ayoola, A. O. Odunade, T. A. Idowu

Abstract:

Sand cast samples of the as-received 66/34Mg-Al alloy were first homogenized at 4900C and then divided into three groups on which annealing, normalising and artificial ageing were respectively carried out. Thermal ageing of the samples involved treatment at 5000C, soaked for 4 hours and quenched in water at ambient temperature followed by tempering at 2000C for 2 hours. Test specimens were subjected to microstructure and mechanical analyses and the results compared. Precipitation of significant volume of stable Mg17Al12 crystals in the aged specimen’s matrix conferred superior mechanical characteristics compared with the annealed, normalized and as-cast specimens. The ultimate tensile strength was 93.4MPa with micro-hardness of 64.9HRC and impact energy (toughness) of 4.05J. In particular, its Young modulus was 10.4GPa which compared well with that of cortical (trabecule) bone’s modulus that varies from 12-17GPa.

Keywords: Mg-Al alloy, artificial ageing, medical implant, cortical bone, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
32381 Optimizing of Gas Consumption in Gas-burner Space Heater

Authors: Saead Negahdari, Davood Jalali Vahid

Abstract:

Nowadays, the importance of energy saving is clearance to everyone. By attention to increasing price of fuels and also the problems of environment pollutions, there are the most efforts for using fuels littler and more optimum in everywhere. This essay studies optimizing of gas consumption in gas-burner space heaters. In oven of each gas-burner space heaters there is two snags to prevent the hot air (the result of combustion of natural gas) to go out of oven of the gas-burner space heaters directly without delivering its heat to the space of favorite environment like a room. These snags cause a excess circulating that helps hot air deliver its heat to the space of favorite environment. It means the exhaust air temperature will be decreased then when there are no snags. This is the aim of this essay to use maximum potential energy of the natural gas to make heat. In this study, by the help of a finite volume software (FLUENT) consumption of the gas-burner space heaters is simulated and optimized. At the end of this writing, by comparing the results of software and experimental results, it will be proved the authenticity of this method.

Keywords: FLUENT, Heat transfer, Oven of Gas-burner spaceheaters, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811