Search results for: Nighttime Vehicle Detection.
1358 Data Mining Techniques in Computer-Aided Diagnosis: Non-Invasive Cancer Detection
Authors: Florin Gorunescu
Abstract:
Diagnosis can be achieved by building a model of a certain organ under surveillance and comparing it with the real time physiological measurements taken from the patient. This paper deals with the presentation of the benefits of using Data Mining techniques in the computer-aided diagnosis (CAD), focusing on the cancer detection, in order to help doctors to make optimal decisions quickly and accurately. In the field of the noninvasive diagnosis techniques, the endoscopic ultrasound elastography (EUSE) is a recent elasticity imaging technique, allowing characterizing the difference between malignant and benign tumors. Digitalizing and summarizing the main EUSE sample movies features in a vector form concern with the use of the exploratory data analysis (EDA). Neural networks are then trained on the corresponding EUSE sample movies vector input in such a way that these intelligent systems are able to offer a very precise and objective diagnosis, discriminating between benign and malignant tumors. A concrete application of these Data Mining techniques illustrates the suitability and the reliability of this methodology in CAD.Keywords: Endoscopic ultrasound elastography, exploratorydata analysis, neural networks, non-invasive cancer detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18671357 Experimental Verification and Finite Element Analysis of a Sliding Door System Used in Automotive Industry
Authors: C. Guven, M. Tufekci, E. Bayik, O. Gedik, M. Tas
Abstract:
A sliding door system is used in commercial vehicles and passenger cars to allow a larger unobstructed access to the interior for loading and unloading. The movement of a sliding door on vehicle body is ensured by mechanisms and tracks having special cross-section which is manufactured by roll forming and stretch bending process. There are three tracks and three mechanisms which are called upper, central and lower on a sliding door system. There are static requirements as strength on different directions, rigidity for mechanisms, door drop off, door sag; dynamic requirements as high energy slam opening-closing and durability requirement to validate these products. In addition, there is a kinematic requirement to find out force values from door handle during manual operating. In this study, finite element analysis and physical test results which are realized for sliding door systems will be shared comparatively.Keywords: Finite element analysis, sliding door, experimental, verification, vehicle tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30961356 BugCatcher.Net: Detecting Bugs and Proposing Corrective Solutions
Authors: Sheetal Chavan, P. J. Kulkarni, Vivek Shanbhag
Abstract:
Although achieving zero-defect software release is practically impossible, software industries should take maximum care to detect defects/bugs well ahead in time allowing only bare minimums to creep into released version. This is a clear indicator of time playing an important role in the bug detection. In addition to this, software quality is the major factor in software engineering process. Moreover, early detection can be achieved only through static code analysis as opposed to conventional testing. BugCatcher.Net is a static analysis tool, which detects bugs in .NET® languages through MSIL (Microsoft Intermediate Language) inspection. The tool utilizes a Parser based on Finite State Automata to carry out bug detection. After being detected, bugs need to be corrected immediately. BugCatcher.Net facilitates correction, by proposing a corrective solution for reported warnings/bugs to end users with minimum side effects. Moreover, the tool is also capable of analyzing the bug trend of a program under inspection.Keywords: Dependence, Early solution, Finite State Automata, Grammar, Late solution, Parser State Transition Diagram, StaticProgram Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101355 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System
Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain
Abstract:
Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.
Keywords: CO2 emission, IoT, EDA, Weighted Sum Model, WSM, regression, smart parking system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7421354 The Parameters Analysis for the Intersection Collision Avoidance Systems Based on Radar Sensors
Authors: Jieh-Shian Young, Chan Wei Hsu
Abstract:
This paper mainly studies the analyses of parameters in the intersection collision avoidance (ICA) system based on the radar sensors. The parameters include the positioning errors, the repeat period of the radar sensor, the conditions of potential collisions of two cross-path vehicles, etc. The analyses of the parameters can provide the requirements, limitations, or specifications of this ICA system. In these analyses, the positioning errors will be increased as the measured vehicle approach the intersection. In addition, it is not necessary to implement the radar sensor in higher position since the positioning sensitivities become serious as the height of the radar sensor increases. A concept of the safety buffer distances for front and rear of the measured vehicle is also proposed. The conditions for potential collisions of two cross-path vehicles are also presented to facilitate the computation algorithm.Keywords: Intersection Collision Avoidance (ICA), Positioning Errors, Radar Sensors, Sensitivity of Positioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15811353 Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell
Authors: Mahanijah Md Kamal., Dingli Yu
Abstract:
This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.
Keywords: Polymer electrolyte membrane fuel cell, radial basis function neural networks, fault detection, fault isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141352 Influence of Cavity Length on Forward-facing Cavity and Opposing Jet Combined Thermal Protection System Cooling Efficiency
Authors: Hai-bo Lu, Wei-qiang Liu
Abstract:
A numerical study on the influence of forward-facing cavity length upon forward-facing cavity and opposing jet combined thermal protection system (TPS) cooling efficiency under hypersonic flow is conducted, by means of which the flow field parameters, heat flux distribution along the outer body surface are obtained. The numerical simulation results are validated by experiments and the cooling effect of the combined TPS with different cavity length is analyzed. The numerical results show that the combined configuration dose well in cooling the nose of the hypersonic vehicle. The deeper the cavity is, the weaker the heat flux is. The recirculation region plays a key role for the reduction of the aerodynamic heating.Keywords: Thermal protection, hypersonic vehicle, aerodynamic heating, forward-facing cavity, opposing jet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17301351 Comparison of Multi-User Detectors of DS-CDMA System
Authors: Kavita Khairnar, Shikha Nema
Abstract:
DS-CDMA system is well known wireless technology. This system suffers from MAI (Multiple Access Interference) caused by Direct Sequence users. Multi-User Detection schemes were introduced to detect the users- data in presence of MAI. This paper focuses on linear multi-user detection schemes used for data demodulation. Simulation results depict the performance of three detectors viz-conventional detector, Decorrelating detector and Subspace MMSE (Minimum Mean Square Error) detector. It is seen that the performance of these detectors depends on the number of paths and the length of Gold code used.Keywords: Cross Correlation Matrix, MAI, Multi-UserDetection, Multipath Effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21131350 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System
Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya
Abstract:
The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.Keywords: Earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7811349 A Robust Diverged Localization and Recognition of License Registration Characters
Authors: M. Sankari, R. Bremananth, C.Meena
Abstract:
Localization and Recognition of License registration characters from the moving vehicle is a computationally complex task in the field of machine vision and is of substantial interest because of its diverse applications such as cross border security, law enforcement and various other intelligent transportation applications. Previous research used the plate specific details such as aspect ratio, character style, color or dimensions of the plate in the complex task of plate localization. In this paper, license registration character is localized by Enhanced Weight based density map (EWBDM) method, which is independent of such constraints. In connection with our previous method, this paper proposes a method that relaxes constraints in lighting conditions, different fonts of character occurred in the plate and plates with hand-drawn characters in various aspect quotients. The robustness of this method is well suited for applications where the appearance of plates seems to be varied widely. Experimental results show that this approach is suited for recognizing license plates in different external environments.
Keywords: Character segmentation, Connectivity checking, Edge detection, Image analysis, license plate localization, license number recognition, Quality frame selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18951348 A Nanosensor System Based On Disuccinimydyl–CYP2E1 for Amperometric Detection of the Anti-Tuberculosis Drug, Pyrazinamide
Authors: R. F. Ajayi, U. Sidwaba, U. Feleni, S. F. Douman, E. Nxusani, L. Wilson, C. Rassie, O. Tovide, P. G. L. Baker, S. L. Vilakazi, R. Tshikhudo, E. I. Iwuoha
Abstract:
Pyrazinamide (PZA) is among the first-line pro-drugs in the tuberculosis (TB) combination chemotherapy used to treat Mycobacterium tuberculosis. Numerous reports have suggested that hepatotoxicity due to pyrazinamide in patients is due to inappropriate dosing. It is, therefore necessary to develop sensitive and reliable techniques for determining the PZA metabolic profile of diagnosed patients promptly and at point-of-care. This study reports the determination of PZA based on nanobiosensor systems developed from disuccinimidyl octanedioate modified Cytochrome P450-2E1 (CYP2E1) electrodeposited on gold substrates derivatised with (poly(8-anilino-1-napthalene sulphonic acid) PANSA/PVP-AgNPs nanocomposites. The rapid and sensitive amperometric PZA detection gave a dynamic linear range of 2µM to 16µM revealing a limit of detection of 0.044µM and a sensitivity of 1.38µA/µM. The Michaelis-Menten parameters; KM, KM app and IMAX were calculated to be 6.0µM, 1.41µM and 1.51x10-6 A, respectively, indicating a nanobiosensor suitable for use in serum.
Keywords: Cytochrome P450-2E1, Disuccinimidyl octanedioate, Pyrazinamide, Tuberculosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241347 Binarization of Text Region based on Fuzzy Clustering and Histogram Distribution in Signboards
Authors: Jonghyun Park, Toan Nguyen Dinh, Gueesang Lee
Abstract:
In this paper, we present a novel approach to accurately detect text regions including shop name in signboard images with complex background for mobile system applications. The proposed method is based on the combination of text detection using edge profile and region segmentation using fuzzy c-means method. In the first step, we perform an elaborate canny edge operator to extract all possible object edges. Then, edge profile analysis with vertical and horizontal direction is performed on these edge pixels to detect potential text region existing shop name in a signboard. The edge profile and geometrical characteristics of each object contour are carefully examined to construct candidate text regions and classify the main text region from background. Finally, the fuzzy c-means algorithm is performed to segment and detected binarize text region. Experimental results show that our proposed method is robust in text detection with respect to different character size and color and can provide reliable text binarization result.Keywords: Text detection, edge profile, signboard image, fuzzy clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22261346 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection
Authors: K. Shiba, T. Kaburagi, Y. Kurihara
Abstract:
With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.Keywords: Wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8501345 Hull Separation Optimization of Catamaran Unmanned Surface Vehicle Powered with Hydrogen Fuel Cell
Authors: Seok-In Sohn, Dae-Hwan Park, Yeon-Seung Lee, Il-Kwon Oh
Abstract:
This paper presents an optimization of the hull separation, i.e. transverse clearance. The main objective is to identify the feasible speed ranges and find the optimum transverse clearance considering the minimum wave-making resistance. The dimensions and the weight of hardware systems installed in the catamaran structured fuel cell powered USV (Unmanned Surface Vehicle) were considered as constraints. As the CAE (Computer Aided Engineering) platform FRIENDSHIP-Framework was used. The hull surface modeling, DoE (Design of Experiment), Tangent search optimization, tool integration and the process automation were performed by FRIENDSHIP-Framework. The hydrodynamic result was evaluated by XPAN the potential solver of SHIPFLOW.Keywords: Full parametric modeling, Hull Separation, Wave-making resistance, Design Of Experiment, Tangent search method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29601344 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles
Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis
Abstract:
E-maintenance is a relatively recent concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This is clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification, cellular connectivity, connectivity to the vehicle computer, and connectivity to analog and digital sensors by means of a specially targeted design of expansion board. Specifically, the latter offers a number of adaptability features to cope with the diverse sensor types employed in different vehicles. In standard mode, the IoT sensor node communicates to the data center through cellular network, transmitting all digital/digitized sensor data, IoT device identity and position. Moreover, the proposed IoT sensor node offers connectivity, through WiFi and an appropriate application, to smart phones or tablets allowing the registration of additional vehicle- and driver-specific information and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware.
Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5951343 Autonomous Underwater Vehicle (AUV) Dynamics Modeling and Performance Evaluation
Authors: K. M. Tan, A. Anvar, T.F. Lu
Abstract:
A sophisticated simulator provides a cost-effective measure to carry out preliminary mission testing and diagnostic while reducing potential failures for real life at sea trials. The presented simulation framework covers three key areas: AUV modeling, sensor modeling, and environment modeling. AUV modeling mainly covers the area of AUV dynamics. Sensor modeling deals with physics and mathematical models that govern each sensor installed onto the AUV. Environment model incorporates the hydrostatic, hydrodynamics, and ocean currents that will affect the AUV in a real-time mission. Based on this designed simulation framework, custom scenarios provided by the user can be modeled and its corresponding behaviors can be observed. This paper focuses on the accuracy of the simulated data from AUV model and environmental model derived from a developed AUV test-bed which was jointly upgraded by DSTO and the University of Adelaide. The main contribution of this paper is to experimentally verify the accuracy of the proposed simulation framework.
Keywords: Autonomous Underwater Vehicle (AUV), simulator, framework, robotics, maritime robot, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47321342 Flight Control of TUAV with Coaxial Rotor and Ducted Fan Configuration by NARMA-L2 Controllers for Enhanced Situational Awareness
Authors: Igor Astrov, Andrus Pedai, Boris Gordon
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for an unmanned helicopter model with coaxial rotor and ducted fan configuration. This control strategy for chosen model of TUAV has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines in hovering, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.
Keywords: Coaxial rotors, ducted fan, NARMA-L2 neurocontroller, situational awareness, tactical unmanned aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23131341 Fuzzy Clustering of Locations for Degree of Accident Proneness based on Vehicle User Perceptions
Authors: Jayanth Jacob, C. V. Hariharakrishnan, Suganthi L.
Abstract:
The rapid urbanization of cities has a bane in the form road accidents that cause extensive damage to life and limbs. A number of location based factors are enablers of road accidents in the city. The speed of travel of vehicles is non-uniform among locations within a city. In this study, the perception of vehicle users is captured on a 10-point rating scale regarding the degree of variation in speed of travel at chosen locations in the city. The average rating is used to cluster locations using fuzzy c-means clustering and classify them as low, moderate and high speed of travel locations. The high speed of travel locations can be classified proactively to ensure that accidents do not occur due to the speeding of vehicles at such locations. The advantage of fuzzy c-means clustering is that a location may be a part of more than one cluster to a varying degree and this gives a better picture about the location with respect to the characteristic (speed of travel) being studied.Keywords: C-means clustering, Location Specific, Road Accidents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18421340 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection
Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid
Abstract:
Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.
Keywords: Features extraction, image segmentation, medical images, tumour detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5881339 Optical Fiber Sensor for Detection of Carbon Nanotubes
Authors: C. I. L. Justino, A. C. Freitas, T. A. P. Rocha-Santos, A. C. Duarte
Abstract:
This work relates the development of an optical fiber (OF) sensor for the detection and quantification of single walled carbon nanotubes in aqueous solutions. The developed OF displays a compact design, it requires less expensive materials and equipment as well as low volume of sample (0.2 mL). This methodology was also validated by the comparison of its analytical performance with that of a standard methodology based on ultraviolet-visible spectroscopy. The developed OF sensor follows the general SDS calibration proposed for OF sensors as a more suitable calibration fitting compared with classical calibrations.Keywords: Optical fiber sensor, single-walled carbon nanotubes, SDS calibration model, UV-Vis spectroscopy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17041338 Digital Image Forensics: Discovering the History of Digital Images
Authors: Gurinder Singh, Kulbir Singh
Abstract:
Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.
Keywords: Computer forensics, multimedia forensics, image ballistics, camera source identification, forgery detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161337 FEA-Based Calculation of Performances of IPM Machines with Five Topologies for Hybrid- Electric Vehicle Traction
Authors: Aimeng Wang, Dejun Ma, Hui Wang
Abstract:
The paper presents a detailed calculation of characteristic of five different topology permanent magnet machines for high performance traction including hybrid -electric vehicles using finite element analysis (FEA) method. These machines include V-shape single layer interior PM, W-shape single-layer interior PM, Segment interior PM and surface PM on the rotor and with distributed winding on the stator. The performance characteristics which include the back-emf voltage and its harmonic, magnet mass, iron loss and ripple torque are compared and analyzed. One of a 7.5kW IPM prototype was tested and verified finite-element analysis results. The aim of the paper is given some guidance and reference for machine designer which are interested in IPM machine selection for high performance traction application.
Keywords: Interior permanent magnet machine, finite-element analysis (FEA), five topologies, electric vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39251336 Optimization of Propulsion in Flapping Micro Air Vehicles Using Genetic Algorithm Method
Authors: Mahdi Abolfazli, Ebrahim Barati, Hamid Reza Karbasian
Abstract:
In this paper the kinematic parameters of a regular Flapping Micro Air Vehicle (FMAV) is investigated. The optimization is done using multi-objective Genetic algorithm method. It is shown that the maximum propulsive efficiency is occurred on the Strouhal number of 0.2-0.3 and foil-pitch amplitude of 15°-30°. Furthermore, increasing pitch amplitude with respect to power optimization increases the thrust slightly until pitch amplitude around 30°, and then the trust is increased notably with increasing of pitch amplitude. Additionally, the maximum mean thrust coefficient is computed of 2.67 and propulsive efficiency for this value is 42%. Based on the thrust optimization, the maximum propulsive efficiency is acquired 54% while the mean thrust coefficient is 2.18 at the same propulsive efficiency. Consequently, the maximum propulsive efficiency is obtained 77% and the appropriate Strouhal number, pitch amplitude and phase difference between heaving and pitching are calculated of 0.27, 31° and 77°, respectively.
Keywords: Flapping foil propulsion, Genetic algorithm, Micro Air Vehicle (MAV), Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21541335 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection
Authors: F. Yilmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli
Abstract:
A quartz crystal microbalance (QCM) nanosensor was developed to detect lysozyme enzyme by functionalizing its gold surface with the attachment of poly(methacroyl-L-phenylalanine) (PMAPA) nanoparticles. PMAPA was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Hydrophobic QCM nanosensor was tested for real time detection of lysozyme enzyme from aqueous solution. The kinetic and affinity studies were determined by using lysozyme solutions with different concentrations. The responses related with mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.
Keywords: HIC, lysozyme, nanosensor, QCM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21711334 Performance of the Aptima® HIV-1 Quant Dx Assay on the Panther System
Authors: Siobhan O’Shea, Sangeetha Vijaysri Nair, Hee Cheol Kim, Charles Thomas Nugent, Cheuk Yan William Tong, Sam Douthwaite, Andrew Worlock
Abstract:
The Aptima® HIV-1 Quant Dx Assay is a fully automated assay on the Panther system. It is based on Transcription- Mediated Amplification and real time detection technologies. This assay is intended for monitoring HIV-1 viral load in plasma specimens and for the detection of HIV-1 in plasma and serum specimens. Nine-hundred and seventy nine specimens selected at random from routine testing at St Thomas’ Hospital, London were anonymised and used to compare the performance of the Aptima HIV-1 Quant Dx assay and Roche COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Two-hundred and thirty four specimens gave quantitative HIV-1 viral load results in both assays. The quantitative results reported by the Aptima Assay were comparable to those reported by the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 with a linear regression slope of 1.04 and an intercept on -0.097. The Aptima assay detected HIV-1 in more samples than the COBAS assay. This was not due to lack of specificity of the Aptima assay because this assay gave 99.83% specificity on testing plasma specimens from 600 HIV-1 negative individuals. To understand the reason for this higher detection rate a side-by-side comparison of low level panels made from the HIV-1 3rd international standard (NIBSC10/152) and clinical samples of various subtypes were tested in both assays. The Aptima assay was more sensitive than the COBAS assay. The good sensitivity, specificity and agreement with other commercial assays make the HIV-1 Quant Dx Assay appropriate for both viral load monitoring and detection of HIV-1 infections.Keywords: HIV viral load, Aptima, Roche, Panther system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32171333 Effect of Compressibility of Brake Friction Materials on Vibration Occurrence
Authors: Mostafa Makrahy, Nouby Ghazaly, Ahmad Moaaz
Abstract:
Brakes are one of the most important safety and performance components in automobiles and airplanes. Development of brakes has mainly focused on increasing braking power and stability. Nowadays, brake noise, vibration and harshness (NVH) together with brake dust emission and pad life are very important to vehicle drivers. The main objective of this research is to define the relationship between compressibility of friction materials and their tendency to generate vibration. An experimental study of the friction-induced vibration obtained by the disc brake system of a passenger car is conducted. Three commercial brake pad materials from different manufacturers are tested and evaluated under various brake conditions against cast iron disc brake. First of all, compressibility test for the brake friction material are measured for each pad. Then, brake dynamometer is used to simulate and reproduce actual vehicle braking conditions. Finally, a comparison between the three pad specimens is conducted. The results showed that compressibility have a very significant effect on reduction the vibration occurrence.
Keywords: Automotive brake, friction material, brake dynamometer, compressibility test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18351332 Detection of Black Holes in MANET Using Collaborative Watchdog with Fuzzy Logic
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
Mobile ad hoc network (MANET) is a self-configuring network of mobile node connected without wires. A Fuzzy Logic Based Collaborative watchdog approach is used to reduce the detection time of misbehaved nodes and increase the overall truthfulness. This methodology will increase the secure efficient routing by detecting the Black Holes attacks. The simulation results proved that this method improved the energy, reduced the delay and also improved the overall performance of the detecting black hole attacks in MANET.
Keywords: MANET, collaborative watchdog, fuzzy logic, AODV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13511331 Copy-Move Image Forgery Detection in Virtual Electrostatic Field
Authors: Michael Zimba, Darlison Nyirenda
Abstract:
A novel copy-move image forgery, CMIF, detection method is proposed. The proposed method presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilized to extract robust features. The extracted features are invariant to additive noise, JPEG compression, and affine transformation. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. SATS is a better option than the common shift vector method because SATS is insensitive to affine transformation. Consequently, the proposed CMIF algorithm is not only fast but also more robust to attacks compared to the existing related CMIF algorithms. The experimental results show high detection rates, as high as 100% in some cases.
Keywords: Affine transformation, Radix sort, SATS, Virtual electrostatic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161330 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection
Authors: Taiwo. M. Akinmuyisitan, John Cosmas
Abstract:
This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.
Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841329 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.
Keywords: Data science, fraud detection, machine learning, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771