Search results for: functional data
7334 Exponential Stability Analysis for Switched Cellular Neural Networks with Time-varying Delays and Impulsive Effects
Authors: Zixin Liu, Fangwei Chen
Abstract:
In this Letter, a class of impulsive switched cellular neural networks with time-varying delays is investigated. At the same time, parametric uncertainties assumed to be norm bounded are considered. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions guaranteeing exponential stability for all admissible parametric uncertainties are derived via constructing appropriate Lyapunov functional. One numerical example is provided to illustrate the validity of the main results obtained in this paper.
Keywords: Switched systems, exponential stability, cellular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14187333 EEIA: Energy Efficient Indexed Aggregation in Smart Wireless Sensor Networks
Authors: Mohamed Watfa, William Daher, Hisham Al Azar
Abstract:
The main idea behind in network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Existing sensor network data aggregation techniques assume that the nodes are preprogrammed and send data to a central sink for offline querying and analysis. This approach faces two major drawbacks. First, the system behavior is preprogrammed and cannot be modified on the fly. Second, the increased energy wastage due to the communication overhead will result in decreasing the overall system lifetime. Thus, energy conservation is of prime consideration in sensor network protocols in order to maximize the network-s operational lifetime. In this paper, we give an energy efficient approach to query processing by implementing new optimization techniques applied to in-network aggregation. We first discuss earlier approaches in sensors data management and highlight their disadvantages. We then present our approach “Energy Efficient Indexed Aggregation" (EEIA) and evaluate it through several simulations to prove its efficiency, competence and effectiveness.Keywords: Sensor Networks, Data Base, Data Fusion, Aggregation, Indexing, Energy Efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17967332 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.
Keywords: Classification, fuzzy logic, tolerance relations, rainfall data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10267331 Granularity Analysis for Spatio-Temporal Web Sensors
Authors: Shun Hattori
Abstract:
In recent years, many researches to mine the exploding Web world, especially User Generated Content (UGC) such as weblogs, for knowledge about various phenomena and events in the physical world have been done actively, and also Web services with the Web-mined knowledge have begun to be developed for the public. However, there are few detailed investigations on how accurately Web-mined data reflect physical-world data. It must be problematic to idolatrously utilize the Web-mined data in public Web services without ensuring their accuracy sufficiently. Therefore, this paper introduces the simplest Web Sensor and spatiotemporallynormalized Web Sensor to extract spatiotemporal data about a target phenomenon from weblogs searched by keyword(s) representing the target phenomenon, and tries to validate the potential and reliability of the Web-sensed spatiotemporal data by four kinds of granularity analyses of coefficient correlation with temperature, rainfall, snowfall, and earthquake statistics per day by region of Japan Meteorological Agency as physical-world data: spatial granularity (region-s population density), temporal granularity (time period, e.g., per day vs. per week), representation granularity (e.g., “rain" vs. “heavy rain"), and media granularity (weblogs vs. microblogs such as Tweets).Keywords: Granularity analysis, knowledge extraction, spatiotemporal data mining, Web credibility, Web mining, Web sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18837330 Non-negative Principal Component Analysis for Face Recognition
Abstract:
Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16957329 Concurrent Approach to Data Parallel Model using Java
Authors: Bala Dhandayuthapani Veerasamy
Abstract:
Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.Keywords: Concurrent, Data Parallel, JDK, Parallel, Thread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20977328 Adjusted Ratio and Regression Type Estimators for Estimation of Population Mean when some Observations are missing
Authors: Nuanpan Nangsue
Abstract:
Ratio and regression type estimators have been used by previous authors to estimate a population mean for the principal variable from samples in which both auxiliary x and principal y variable data are available. However, missing data are a common problem in statistical analyses with real data. Ratio and regression type estimators have also been used for imputing values of missing y data. In this paper, six new ratio and regression type estimators are proposed for imputing values for any missing y data and estimating a population mean for y from samples with missing x and/or y data. A simulation study has been conducted to compare the six ratio and regression type estimators with a previous estimator of Rueda. Two population sizes N = 1,000 and 5,000 have been considered with sample sizes of 10% and 30% and with correlation coefficients between population variables X and Y of 0.5 and 0.8. In the simulations, 10 and 40 percent of sample y values and 10 and 40 percent of sample x values were randomly designated as missing. The new ratio and regression type estimators give similar mean absolute percentage errors that are smaller than the Rueda estimator for all cases. The new estimators give a large reduction in errors for the case of 40% missing y values and sampling fraction of 30%.
Keywords: Auxiliary variable, missing data, ratio and regression type estimators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17327327 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15777326 Stability Criteria for Neural Networks with Two Additive Time-varying Delay Components
Authors: Qingqing Wang, Shouming Zhong
Abstract:
This paper is concerned with the stability problem with two additive time-varying delay components. By choosing one augmented Lyapunov-Krasovskii functional, using some new zero equalities, and combining linear matrix inequalities (LMI) techniques, two new sufficient criteria ensuring the global stability asymptotic stability of DNNs is obtained. These stability criteria are present in terms of linear matrix inequalities and can be easily checked. Finally, some examples are showed to demonstrate the effectiveness and less conservatism of the proposed method.
Keywords: Neural networks, Globally asymptotic stability, LMI approach, Additive time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15667325 Software Test Data Generation using Ant Colony Optimization
Authors: Huaizhong Li, C.Peng Lam
Abstract:
State-based testing is frequently used in software testing. Test data generation is one of the key issues in software testing. A properly generated test suite may not only locate the errors in a software system, but also help in reducing the high cost associated with software testing. It is often desired that test data in the form of test sequences within a test suite can be automatically generated to achieve required test coverage. This paper proposes an Ant Colony Optimization approach to test data generation for the state-based software testing.
Keywords: Software testing, ant colony optimization, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34597324 Natural Language News Generation from Big Data
Authors: Bastian Haarmann, Lukas Sikorski
Abstract:
In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The resulting fully automatic generated news stories have a high resemblance to the style in which the human writer would draw up such a story. Topics include soccer games, stock exchange market reports, and weather forecasts. Each generated text is unique. Readyto-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save timeconsuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.
Keywords: Big data, natural language generation, publishing, robotic journalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16877323 Analysis of Periodic Solution of Delay Fuzzy BAM Neural Networks
Authors: Qianhong Zhang, Lihui Yang, Daixi Liao
Abstract:
In this paper, by employing a new Lyapunov functional and an elementary inequality analysis technique, some sufficient conditions are derived to ensure the existence and uniqueness of periodic oscillatory solution for fuzzy bi-directional memory (BAM) neural networks with time-varying delays, and all other solutions of the fuzzy BAM neural networks converge the uniqueness periodic solution. These criteria are presented in terms of system parameters and have important leading significance in the design and applications of neural networks. Moreover an example is given to illustrate the effectiveness and feasible of results obtained.Keywords: Fuzzy BAM neural networks, Periodic solution, Global exponential stability, Time-varying delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15157322 A Development of OTOP Web Application: In Case of Samut Songkhram Province
Authors: Satien Janpla, Kunyanuth Kularbphettong
Abstract:
This paper aims to present the development of a web‑based system to serve the need of selling OTOP products in Samut Songkhram, Thailand. This system was designed to promote and sell OTOP products on Web site. We describe the design approaches and functional components of this system. The system was developed by PHP and JavaScript and MySQL database System. To evaluate the system performance, questionnaires were used to measure user satisfaction with system usability by specialists and users. The results were satisfactory as followed: Means for specialists and users were 4.05 and 3.97, and standard deviation for specialists and users were 0.563 and 0.644 respectively. Further analysis showed that the quality of One Tambon One Product (OTOP) Website was also at a good level as well.
Keywords: Web-based system, OTOP, product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18537321 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process
Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek
Abstract:
It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.
Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23997320 Delay-range-Dependent Exponential Synchronization of Lur-e Systems with Markovian Switching
Authors: Xia Zhou, Shouming Zhong
Abstract:
The problem of delay-range-dependent exponential synchronization is investigated for Lur-e master-slave systems with delay feedback control and Markovian switching. Using Lyapunov- Krasovskii functional and nonsingular M-matrix method, novel delayrange- dependent exponential synchronization in mean square criterions are established. The systems discussed in this paper is advanced system, and takes all the features of interval systems, Itˆo equations, Markovian switching, time-varying delay, as well as the environmental noise, into account. Finally, an example is given to show the validity of the main result.
Keywords: Synchronization, delay-range-dependent, Markov chain, generalized Itō's formula, brownian motion, M-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15687319 A New Model for Discovering XML Association Rules from XML Documents
Authors: R. AliMohammadzadeh, M. Rahgozar, A. Zarnani
Abstract:
The inherent flexibilities of XML in both structure and semantics makes mining from XML data a complex task with more challenges compared to traditional association rule mining in relational databases. In this paper, we propose a new model for the effective extraction of generalized association rules form a XML document collection. We directly use frequent subtree mining techniques in the discovery process and do not ignore the tree structure of data in the final rules. The frequent subtrees based on the user provided support are split to complement subtrees to form the rules. We explain our model within multi-steps from data preparation to rule generation.Keywords: XML, Data Mining, Association Rule Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16317318 Modelling Silica Optical Fibre Reliability: A Software Application
Authors: I. Severin, M. Caramihai, R. El Abdi, M. Poulain, A. Avadanii
Abstract:
In order to assess optical fiber reliability in different environmental and stress conditions series of testing are performed simulating overlapping of chemical and mechanical controlled varying factors. Each series of testing may be compared using statistical processing: i.e. Weibull plots. Due to the numerous data to treat, a software application has appeared useful to interpret selected series of experiments in function of envisaged factors. The current paper presents a software application used in the storage, modelling and interpretation of experimental data gathered from optical fibre testing. The present paper strictly deals with the software part of the project (regarding the modelling, storage and processing of user supplied data).
Keywords: Optical fibres, computer aided analysis, data models, data processing, graphical user interfaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18237317 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represent another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.
Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8537316 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.
Keywords: Early Warning System, Knowledge Management, Topic Modeling, Market Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19207315 An Implementation of Data Reusable MPEG Video Coding Scheme
Authors: Vasily G. Moshnyaga
Abstract:
This paper presents an optimized MPEG2 video codec implementation, which drastically reduces the number of computations and memory accesses required for video compression. Unlike traditional scheme, we reuse data stored in frame memory to omit unnecessary coding operations and memory read/writes for unchanged macroblocks. Due to dynamic memory sharing among reference frames, data-driven macroblock characterization and selective macroblock processing, we perform less than 15% of the total operations required by a conventional coder while maintaining high picture quality.
Keywords: Data reuse, adaptive processing, video coding, MPEG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12667314 Accurate Optical Flow Based on Spatiotemporal Gradient Constancy Assumption
Authors: Adam Rabcewicz
Abstract:
Variational methods for optical flow estimation are known for their excellent performance. The method proposed by Brox et al. [5] exemplifies the strength of that framework. It combines several concepts into single energy functional that is then minimized according to clear numerical procedure. In this paper we propose a modification of that algorithm starting from the spatiotemporal gradient constancy assumption. The numerical scheme allows to establish the connection between our model and the CLG(H) method introduced in [18]. Experimental evaluation carried out on synthetic sequences shows the significant superiority of the spatial variant of the proposed method. The comparison between methods for the realworld sequence is also enclosed.Keywords: optical flow, variational methods, gradient constancy assumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21837313 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique
Authors: Hyun-Woo Cho
Abstract:
The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.
Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13177312 Increasing Replica Consistency Performances with Load Balancing Strategy in Data Grid Systems
Authors: Sarra Senhadji, Amar Kateb, Hafida Belbachir
Abstract:
Data replication in data grid systems is one of the important solutions that improve availability, scalability, and fault tolerance. However, this technique can also bring some involved issues such as maintaining replica consistency. Moreover, as grid environment are very dynamic some nodes can be more uploaded than the others to become eventually a bottleneck. The main idea of our work is to propose a complementary solution between replica consistency maintenance and dynamic load balancing strategy to improve access performances under a simulated grid environment.
Keywords: Consistency, replication, data grid, load balancing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23257311 Nonparametric Control Chart Using Density Weighted Support Vector Data Description
Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek
Abstract:
In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.
Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21227310 Model-Based Person Tracking Through Networked Cameras
Authors: Kyoung-Mi Lee, Youn-Mi Lee
Abstract:
This paper proposes a way to track persons by making use of multiple non-overlapping cameras. Tracking persons on multiple non-overlapping cameras enables data communication among cameras through the network connection between a camera and a computer, while at the same time transferring human feature data captured by a camera to another camera that is connected via the network. To track persons with a camera and send the tracking data to another camera, the proposed system uses a hierarchical human model that comprises a head, a torso, and legs. The feature data of the person being modeled are transferred to the server, after which the server sends the feature data of the human model to the cameras connected over the network. This enables a camera that captures a person's movement entering its vision to keep tracking the recognized person with the use of the feature data transferred from the server.
Keywords: Person tracking, human model, networked cameras, vision-based surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14897309 Slugging Frequency Correlation for Inclined Gas-liquid Flow
Authors: V. Hernandez-Perez, M. Abdulkadir, B. J. Azzopardi
Abstract:
In this work, new experimental data for slugging frequency in inclined gas-liquid flow are reported, and a new correlation is proposed. Scale experiments were carried out using a mixture of air and water in a 6 m long pipe. Two different pipe diameters were used, namely, 38 and 67 mm. The data were taken with capacitance type sensors at a data acquisition frequency of 200 Hz over an interval of 60 seconds. For the range of flow conditions studied, the liquid superficial velocity is observed to influence the frequency strongly. A comparison of the present data with correlations available in the literature reveals a lack of agreement. A new correlation for slug frequency has been proposed for the inclined flow, which represents the main contribution of this work.Keywords: slug frequency, inclined flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31637308 FCA-based Conceptual Knowledge Discovery in Folksonomy
Authors: Yu-Kyung Kang, Suk-Hyung Hwang, Kyoung-Mo Yang
Abstract:
The tagging data of (users, tags and resources) constitutes a folksonomy that is the user-driven and bottom-up approach to organizing and classifying information on the Web. Tagging data stored in the folksonomy include a lot of very useful information and knowledge. However, appropriate approach for analyzing tagging data and discovering hidden knowledge from them still remains one of the main problems on the folksonomy mining researches. In this paper, we have proposed a folksonomy data mining approach based on FCA for discovering hidden knowledge easily from folksonomy. Also we have demonstrated how our proposed approach can be applied in the collaborative tagging system through our experiment. Our proposed approach can be applied to some interesting areas such as social network analysis, semantic web mining and so on.
Keywords: Folksonomy data mining, formal concept analysis, collaborative tagging, conceptual knowledge discovery, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20297307 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy
Authors: Nazaket Gazieva
Abstract:
Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.
Keywords: Biometric voice prints, fundamental frequency, phonogram, speech signal, temporal characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5777306 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15207305 A Novel Method for Behavior Modeling in Uncertain Information Systems
Authors: Ali Haroonabadi, Mohammad Teshnehlab
Abstract:
None of the processing models in the software development has explained the software systems performance evaluation and modeling; likewise, there exist uncertainty in the information systems because of the natural essence of requirements, and this may cause other challenges in the processing of software development. By definition an extended version of UML (Fuzzy- UML), the functional requirements of the software defined uncertainly would be supported. In this study, the behavioral description of uncertain information systems by the aid of fuzzy-state diagram is crucial; moreover, the introduction of behavioral diagrams role in F-UML is investigated in software performance modeling process. To get the aim, a fuzzy sub-profile is used.Keywords: Fuzzy System, Software Development Model, Software Performance Evaluation, UML
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497