Search results for: facial emotion recognition
263 Chilean Wines Classification based only on Aroma Information
Authors: Nicolás H. Beltrán, Manuel A. Duarte-Mermoud, Víctor A. Soto, Sebastián A. Salah, and Matías A. Bustos
Abstract:
Results of Chilean wine classification based on the information provided by an electronic nose are reported in this paper. The classification scheme consists of two parts; in the first stage, Principal Component Analysis is used as feature extraction method to reduce the dimensionality of the original information. Then, Radial Basis Functions Neural Networks is used as pattern recognition technique to perform the classification. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère wine samples from different years, valleys and vineyards of Chile.Keywords: Feature extraction techniques, Pattern recognitiontechniques, Principal component analysis, Radial basis functionsneural networks, Wine classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556262 Social Business Models: When Profits and Impacts Are Not at Odds
Authors: Elisa Pautasso, Matteo Castagno, Michele Osella
Abstract:
In the last decade the emergence of new social needs as an effect of the economic crisis has stimulated the flourishing of business endeavours characterised by explicit social goals. Social start-ups, social enterprises or Corporate Social Responsibility operations carried out by traditional companies are quintessential examples in this regard. This paper analyses these kinds of initiatives in order to discover the main characteristics of social business models and to provide insights to social entrepreneurs for developing or improving their strategies. The research is conducted through the integration of literature review and case study analysis and, thanks to the recognition of the importance of both profits and social impacts as the key success factors for a social business model, proposes a framework for identifying indicators suitable for measuring the social impacts generated.Keywords: Business model, case study, impacts, social business.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815261 Reconstruction of the Most Energetic Modes in a Fully Developed Turbulent Channel Flow with Density Variation
Authors: Elteyeb Eljack, Takashi Ohta
Abstract:
Proper orthogonal decomposition (POD) is used to reconstruct spatio-temporal data of a fully developed turbulent channel flow with density variation at Reynolds number of 150, based on the friction velocity and the channel half-width, and Prandtl number of 0.71. To apply POD to the fully developed turbulent channel flow with density variation, the flow field (velocities, density, and temperature) is scaled by the corresponding root mean square values (rms) so that the flow field becomes dimensionless. A five-vector POD problem is solved numerically. The reconstructed second-order moments of velocity, temperature, and density from POD eigenfunctions compare favorably to the original Direct Numerical Simulation (DNS) data.
Keywords: Pattern Recognition, POD, Coherent Structures, Low dimensional modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379260 Multi-Context Recurrent Neural Network for Time Series Applications
Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi
Abstract:
this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.
Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3055259 Multiple Organ Manifestation in Neonatal Lupus Erythematous (Report of Two Cases)
Authors: Lubis A., Widayanti R., Hikmah Z., Endaryanto A., Harsono A., Harianto A., Etika R., Handayani D. K., Sampurna M.
Abstract:
Neonatal lupus erythematous (NLE) is a rare disease marked by clinical characteristic and specific maternal autoantibody. Many cutaneous, cardiac, liver, and hematological manifestations could happen with affect of one organ or multiple. In this case, both babies were premature, low birth weight (LBW), small for gestational age (SGA) and born through caesarean section from a systemic lupus erythematous (SLE) mother. In the first case, we found a baby girl with dyspnea and grunting. Chest X ray showed respiratory distress syndrome (RDS) great I and echocardiography showed small atrial septal defect (ASD) and ventricular septal defect (VSD). She also developed anemia, thrombocytopenia, elevated C-reactive protein, hypoalbuminemia, increasing coagulation factors, hyperbilirubinemia, and positive blood culture of Klebsiella pneumonia. Anti-Ro/SSA and Anti-nRNP/sm were positive. Intravenous fluid, antibiotic, transfusion of blood, thrombocyte concentrate, and fresh frozen plasma were given. The second baby, male presented with necrotic tissue on the left ear and skin rashes, erythematous macula, athropic scarring, hyperpigmentation on all of his body with various size and facial haemorrhage. He also suffered from thrombocytopenia, mild elevated transaminase enzyme, hyperbilirubinemia, anti-Ro/SSA was positive. Intravenous fluid, methyprednisolone, intravenous immunoglobulin (IVIG), blood, and thrombocyte concentrate transfution were given. Two cases of neonatal lupus erythematous had been presented. Diagnosis based on clinical presentation and maternal auto antibody on neonate. Organ involvement in NLE can occur as single or multiple manifestations.
Keywords: Neonatus lupus erythematous, maternal autoantibody, clinical characteristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111258 The Labeled Classification and its Application
Authors: M. Nemissi, H. Seridi, H. Akdag
Abstract:
This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415257 Target Detection with Improved Image Texture Feature Coding Method and Support Vector Machine
Authors: R. Xu, X. Zhao, X. Li, C. Kwan, C.-I Chang
Abstract:
An image texture analysis and target recognition approach of using an improved image texture feature coding method (TFCM) and Support Vector Machine (SVM) for target detection is presented. With our proposed target detection framework, targets of interest can be detected accurately. Cascade-Sliding-Window technique was also developed for automated target localization. Application to mammogram showed that over 88% of normal mammograms and 80% of abnormal mammograms can be correctly identified. The approach was also successfully applied to Synthetic Aperture Radar (SAR) and Ground Penetrating Radar (GPR) images for target detection.
Keywords: Image texture analysis, feature extraction, target detection, pattern classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784256 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.
Keywords: AlexNet, Deep learning, image recognition, 6D posture estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 604255 Static Voltage Stability Assessment Considering the Power System Contingencies using Continuation Power Flow Method
Authors: Mostafa Alinezhad, Mehrdad Ahmadi Kamarposhti
Abstract:
According to the increasing utilization in power system, the transmission lines and power plants often operate in stability boundary and system probably lose its stable condition by over loading or occurring disturbance. According to the reasons that are mentioned, the prediction and recognition of voltage instability in power system has particular importance and it makes the network security stronger.This paper, by considering of power system contingencies based on the effects of them on Mega Watt Margin (MWM) and maximum loading point is focused in order to analyse the static voltage stability using continuation power flow method. The study has been carried out on IEEE 14-Bus Test System using Matlab and Psat softwares and results are presented.
Keywords: Contingency, Continuation Power Flow, Static Voltage Stability, Voltage Collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225254 Virtual Gesture Screen System Based on 3D Visual Information and Multi-Layer Perceptron
Authors: Yang-Keun Ahn, Min-Wook Kim, Young-Choong Park, Kwang-Soon Choi, Woo-Chool Park, Hae-Moon Seo, Kwang-Mo Jung
Abstract:
Active research is underway on virtual touch screens that complement the physical limitations of conventional touch screens. This paper discusses a virtual touch screen that uses a multi-layer perceptron to recognize and control three-dimensional (3D) depth information from a time of flight (TOF) camera. This system extracts an object-s area from the image input and compares it with the trajectory of the object, which is learned in advance, to recognize gestures. The system enables the maneuvering of content in virtual space by utilizing human actions.Keywords: Gesture Recognition, Depth Sensor, Virtual Touch Screen
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653253 Automatic Moment-Based Texture Segmentation
Authors: Tudor Barbu
Abstract:
An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Then, an automatic pixel classification approach is proposed. The feature vectors are clustered using an unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.
Keywords: Image segmentation, moment-based texture analysis, automatic classification, validity indexes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386252 A New Approach for Mobile Agent Security
Authors: R. Haghighat far, H. Yarahmadi
Abstract:
A mobile agent is a software which performs an action autonomously and independently as a person or an organizations assistance. Mobile agents are used for searching information, retrieval information, filtering, intruder recognition in networks, and so on. One of the important issues of mobile agent is their security. It must consider different security issues in effective and secured usage of mobile agent. One of those issues is the integrity-s protection of mobile agents. In this paper, the advantages and disadvantages of each method, after reviewing the existing methods, is examined. Regarding to this matter that each method has its own advantage or disadvantage, it seems that by combining these methods, one can reach to a better method for protecting the integrity of mobile agents. Therefore, this method is provided in this paper and then is evaluated in terms of existing method. Finally, this method is simulated and its results are the sign of improving the possibility of integrity-s protection of mobile agents.Keywords: Integrity, Mobile Agent, Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767251 E-Voting: A Trustworthiness In Democratic; A View from Technology, Political and Social Issue
Authors: Sera Syarmila Sameon, Rohaini Ramli
Abstract:
A trustworthy voting process in democratic is important that each vote is recorded with accuracy and impartiality. The accuracy and impartiality are tallied in high rate with biometric system. One of the sign is a fingerprint. Fingerprint recognition is still a challenging problem, because of the distortions among the different impression of the same finger. Because of the trustworthy of biometric voting technologies, it may give a great effect on numbers of voter-s participation and outcomes of the democratic process. Hence in this study, the authors are interested in designing and analyzing the Electronic Voting System and the participation of the users. The system is based on the fingerprint minutiae with the addition of person ID number. This is in order to enhance the accuracy and speed of the voting process. The new design is analyzed by conducting pilot election among a class of students for selecting their representative.Keywords: Biometric, FAR and FRR, democratic, voting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580250 Evolving Neural Networks using Moment Method for Handwritten Digit Recognition
Authors: H. El Fadili, K. Zenkouar, H. Qjidaa
Abstract:
This paper proposes a neural network weights and topology optimization using genetic evolution and the backpropagation training algorithm. The proposed crossover and mutation operators aims to adapt the networks architectures and weights during the evolution process. Through a specific inheritance procedure, the weights are transmitted from the parents to their offsprings, which allows re-exploitation of the already trained networks and hence the acceleration of the global convergence of the algorithm. In the preprocessing phase, a new feature extraction method is proposed based on Legendre moments with the Maximum entropy principle MEP as a selection criterion. This allows a global search space reduction in the design of the networks. The proposed method has been applied and tested on the well known MNIST database of handwritten digits.Keywords: Genetic algorithm, Legendre Moments, MEP, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674249 Pineapple Maturity Recognition Using RGB Extraction
Authors: J. I. Asnor, S. Rosnah, Z. W. H. Wan, H. A. B. Badrul
Abstract:
Pineapples can be classified using an index with seven levels of maturity based on the green and yellow color of the skin. As the pineapple ripens, the skin will change from pale green to a golden or yellowish color. The issues that occur in agriculture nowadays are to do with farmers being unable to distinguish between the indexes of pineapple maturity correctly and effectively. There are several reasons for why farmers cannot properly follow the guideline provide by Federal Agriculture Marketing Authority (FAMA) and one of reason is that due to manual inspection done by experts, there are no specific and universal guidelines to be adopted by farmers due to the different points of view of the experts when sorting the pineapples based on their knowledge and experience. Therefore, an automatic system will help farmers to identify pineapple maturity effectively and will become a universal indicator to farmers.Keywords: Artificial Neural Network, Image Processing, Index of Maturity, Pineapple
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3456248 The Presence of Enterobacters (E.Coli and Salmonella spp.) in Industrial Growing Poultry in Albania
Authors: Boci J., Çabeli P., Shtylla T., Kumbe I.
Abstract:
The development of the poultry industry in Albania is mainly based on the existence of intensive modern farms with huge capacities, which often are mixed with other forms. Colibacillosis is commonly displayed regardless of the type of breeding, delivering high mortality in poultry industry. The mechanisms with which pathogen enterobacters are able to cause the infection in poultry are not yet clear. The routine diagnose in the field, followed by isolation of E. coli and species of Salmonella genres in reference laboratories cannot lead in classification or full recognition of circulative strains in a territory, if it is not performed a differentiation among the present microorganisms in intensive farms and those in rural areas. In this study were isolated 1.496 strains of E. coli and 378 Salmonella spp. This study, presents distribution of poultry pathogenosity of E.coli and Salmonella spp., based on the usage of innovative diagnostic methods.
Keywords: poultry, E.coli, Salmonella spp., Enterobacter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078247 Entrepreneurship and the Discovery and Exploitation of Business Opportunities: Empirical Evidence from the Malawian Tourism Sector
Authors: Aravind Mohan Krishnan
Abstract:
This paper identifies a research gap in the literature on tourism entrepreneurship in Malawi, Africa, and investigates how entrepreneurs from the Malawian tourism sector discover and exploit business opportunities. In particular, the importance of prior experience and business networks in the opportunity development process is debated. Another area of empirical research examined here is the opportunity recognition-venture creation sequence. While Malawi presents fruitful business opportunities, exploiting these opportunities into fully realized business ideas is a real challenge due to the country’s difficult business environment and poor promotional and marketing efforts. The study concludes by calling for further research in Sub-Saharan Africa in order to develop our understanding of entrepreneurship in this (African) context.
Keywords: Tourism, entrepreneurship, Malawi, business opportunities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365246 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.
Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833245 The Resource-Base View of Organization and Innovation: Recognition of Significant Relationship in an Organization
Authors: Francis Deinmodei W. Poazi, Jasmine O. Tamunosiki-Amadi, Maurice Fems
Abstract:
In recent times the resource-based view (RBV) of strategic management has recorded a sizeable attention yet there has not been a considerable scholarly and managerial discourse, debate and attention. As a result, this paper gives special bit of critical reasoning as well as top-notch analyses and relationship between RBV and organizational innovation. The study examines those salient aspects of RBV that basically have the will power in ensuring the organization's capacity to go for innovative capability. In achieving such fit and standpoint, the paper joins other relevant academic discourse and empirical evidence. To this end, a reasonable amount of contributions in setting the ground running for future empirical researches would have been provided. More so, the study is guided and built on the following strength and significance: Firstly, RBV sees resources as heterogeneity which forms a strong point of strength and allows organisations to gain competitive advantage. In order words, competitive advantage can be achieved or delivered to the organization when resources are distinctively utilized in a valuable manner more than the envisaged competitors of the organization. Secondly, RBV is significantly influential in determining the real resources that are available in the organization with a view to locate capabilities within in order to attract more profitability into the organization when applied. Thus, there will be more sustainable growth and success in the ever competitive and emerging market. Thus, to have succinct description of the basic methodologies, the study adopts both qualitative as well as quantitative approach with a view to have a broad samples of opinion in establishing and identifying key and strategic organizational resources to enable managers of resources to gain a competitive advantage as well as generating a sustainable increase and growth in profit. Furthermore, a comparative approach and analysis was used to examine the performance of RBV within the organization. Thus, the following are some of the findings of the study: it is clear that there is a nexus between RBV and growth of competitively viable organizations. More so, in most parts, organizations have heterogeneous resources domiciled in their organizations but not all organizations as it was specifically and intelligently adopting the tenets of RBV to strengthen heterogeneity of resources which allows organisations to gain competitive advantage. Other findings of this study reveal that of managerial perception of RBV with respect to application and transformation of resources to achieve a profitable end. It is against this backdrop, the importance of RBV cannot be overemphasized; the study is strongly convinced and think that RBV view is one focal and distinct approach that is focused on internal to outside strategy which engenders sourcing or generating resources internally as well as having the quest to apply such internally sourced resources diligently to increase or gain competitive advantage.
Keywords: Competitive advantage, innovation, organisation, recognition, resource-based view.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167244 Generation of Sets of Synthetic Classifiers for the Evaluation of Abstract-Level Combination Methods
Authors: N. Greco, S. Impedovo, R.Modugno, G. Pirlo
Abstract:
This paper presents a new technique for generating sets of synthetic classifiers to evaluate abstract-level combination methods. The sets differ in terms of both recognition rates of the individual classifiers and degree of similarity. For this purpose, each abstract-level classifier is considered as a random variable producing one class label as the output for an input pattern. From the initial set of classifiers, new slightly different sets are generated by applying specific operators, which are defined at the purpose. Finally, the sets of synthetic classifiers have been used to estimate the performance of combination methods for abstract-level classifiers. The experimental results demonstrate the effectiveness of the proposed approach.
Keywords: Abstract-level Classifier, Dempster-Shafer Rule, Multi-expert Systems, Similarity Index, System Evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499243 Investigation of the Tattooed Skin by OCT
Authors: Young Geun Kim, Tae Woo Lee, Changmin Yeo, Jung min Yoo, Yeo Jin Kang, Tack-Joong Kim, Byungjo Jung, Ji Hun Cha, Chan Hoi Hur, Dong-Sup Kim, Ki Jung Park, Han Sung Kim
Abstract:
The intention of this lessons is to assess the probability of optical coherence tomography (OCT) for biometric recognition. The OCT is the foundation on an optical signal acquisition and processing method and has the micrometer-resolution. In this study, we used the porcine skin for verifying the abovementioned means. The porcine tissue was sound acknowledged for structural and immunohistochemical similarity with human skin, so it could be suitable for pre-clinical trial as investigational specimen. For this reason, it was tattooed by the tattoo machine with the tattoo-pigment. We detected the pattern of the tattooed skin by the OCT according to needle speed. The result was consistent with the histology images. This result showed that the OCT was effective to examine the tattooed skin section noninvasively. It might be available to identify morphological changes inside the skin.Keywords: mechanical skin damage, optical coherence tomography, tattooed skin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772242 High Impedance Faults Detection Technique Based on Wavelet Transform
Authors: Ming-Ta Yang, Jin-Lung Guan, Jhy-Cherng Gu
Abstract:
The purpose of this paper is to solve the problem of protecting aerial lines from high impedance faults (HIFs) in distribution systems. This investigation successfully applies 3I0 zero sequence current to solve HIF problems. The feature extraction system based on discrete wavelet transform (DWT) and the feature identification technique found on statistical confidence are then applied to discriminate effectively between the HIFs and the switch operations. Based on continuous wavelet transform (CWT) pattern recognition of HIFs is proposed, also. Staged fault testing results demonstrate that the proposed wavelet based algorithm is feasible performance well.Keywords: Continuous wavelet transform, discrete wavelet transform, high impedance faults, statistical confidence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336241 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.
Keywords: Pattern recognition, partitional clustering, K-means clustering, Manhattan distance, terrorism data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366240 Enhanced Traffic Light Detection Method Using Geometry Information
Authors: Changhwan Choi, Yongwan Park
Abstract:
In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.
Keywords: Traffic light, Intelligent vehicle, Night, Detection, DGPS (Differential Global Positioning System).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426239 Bangla Vowel Characterization Based on Analysis by Synthesis
Authors: Syed Akhter Hossain, M. Lutfar Rahman, Farruk Ahmed
Abstract:
Bangla Vowel characterization determines the spectral properties of Bangla vowels for efficient synthesis as well as recognition of Bangla vowels. In this paper, Bangla vowels in isolated word have been analyzed based on speech production model within the framework of Analysis-by-Synthesis. This has led to the extraction of spectral parameters for the production model in order to produce different Bangla vowel sounds. The real and synthetic spectra are compared and a weighted square error has been computed along with the error in the formant bandwidths for efficient representation of Bangla vowels. The extracted features produced good representation of targeted Bangla vowel. Such a representation also plays essential role in low bit rate speech coding and vocoders.
Keywords: Speech, vowel, formant, synthesis, spectrum, LPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377238 Impairments Correction of Six-Port Based Millimeter-Wave Radar
Authors: Dan Ohev Zion, Alon Cohen
Abstract:
In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.Keywords: Radar, millimeter-wave, six-port, FMCW Radar, IQ mismatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501237 A Novel Technique for Ferroresonance Identification in Distribution Networks
Authors: G. Mokryani, M. R. Haghifam, J. Esmaeilpoor
Abstract:
Happening of Ferroresonance phenomenon is one of the reasons of consuming and ruining transformers, so recognition of Ferroresonance phenomenon has a special importance. A novel method for classification of Ferroresonance presented in this paper. Using this method Ferroresonance can be discriminate from other transients such as capacitor switching, load switching, transformer switching. Wavelet transform is used for decomposition of signals and Competitive Neural Network used for classification. Ferroresonance data and other transients was obtained by simulation using EMTP program. Using Daubechies wavelet transform signals has been decomposed till six levels. The energy of six detailed signals that obtained by wavelet transform are used for training and trailing Competitive Neural Network. Results show that the proposed procedure is efficient in identifying Ferroresonance from other events.
Keywords: Competitive Neural Network, Ferroresonance, EMTP program, Wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433236 Review and Experiments on SDMSCue
Authors: Ashraf Anwar
Abstract:
In this work, I present a review on Sparse Distributed Memory for Small Cues (SDMSCue), a variant of Sparse Distributed Memory (SDM) that is capable of handling small cues. I then conduct and show some cognitive experiments on SDMSCue to test its cognitive soundness compared to SDM. Small cues refer to input cues that are presented to memory for reading associations; but have many missing parts or fields from them. The original SDM failed to handle such a problem. SDMSCue handles and overcomes this pitfall. The main idea in SDMSCue; is the repeated projection of the semantic space on smaller subspaces; that are selected based on the input cue length and pattern. This process allows for Read/Write operations using an input cue that is missing a large portion. SDMSCue is augmented with the use of genetic algorithms for memory allocation and initialization. I claim that SDM functionality is a subset of SDMSCue functionality.Keywords: Artificial intelligence, recall, recognition, SDM, SDMSCue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382235 Consequential Influences of Work-Induced Emotions on the Work-Induced Happiness of Frontline Workers in Finance-Oriented Firms
Authors: Mohammed-Aminu Sanda, Emmanuel K. Mawuena
Abstract:
Frontline workers performing client service duties in finance-oriented firms in most sub-Saharan African countries, such as Ghana, are known to be challenged in the conduct of their activities. The challenge is attributed to clients’ continued demand for real-time services from such workers, despite the introduction of technological interventions to offset the situation. This has caused such frontline workers to experience increases in their work-induced emotions with consequential effects on their work-induced happiness. This study, therefore, explored the effect of frontline workers’ work-induced emotions on their worked-induced happiness when providing tellering services to clients. A cross-sectional design and quantitative technique were used. Data were collected from a sample of 280 frontline workers using questionnaire. Based on the analysis, it was found that an increase in the frontline workers’ work-induced emotions, caused by their feelings of strain, burnout, frustration, and hard work, had consequential effect on their work-induced happiness. This consequential effect was also found to be aggravated by the workers’ senses of being stretched beyond limit, being emotionally drained, and being used up by their work activities. It is concluded that frontline workers in finance-oriented firms can provide quality real-time services to clients without increases in their work-induced emotions, but with enhanced work-induced happiness, when the psychological and physiological emotional factors associated with the challenged work activities are understood and remedied. Management of the firms can use such understanding to redesign the activities of their frontline workers and improve the quality of their service delivery interactivity with clients.
Keywords: Client-service activity, finance industrial sector, frontline workers, work-induced emotion, work-induced happiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776234 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application
Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta
Abstract:
The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469