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Abstract—Proper orthogonal decomposition (POD) is used to re-
construct spatio-temporal data of a fully developed turbulent channel
flow with density variation at Reynolds number of 150, based on
the friction velocity and the channel half-width, and Prandtl number
of 0.71. To apply POD to the fully developed turbulent channel
flow with density variation, the flow field (velocities, density, and
temperature) is scaled by the corresponding root mean square values
(rms) so that the flow field becomes dimensionless. A five-vector
POD problem is solved numerically. The reconstructed second-order
moments of velocity, temperature, and density from POD eigenfunc-
tions compare favorably to the original Direct Numerical Simulation
(DNS) data.

Keywords—Pattern Recognition, POD, Coherent Structures, Low
dimensional modelling.

I. INTRODUCTION

PROPER orthogonal decomposition, also known as
Karhunen-Loève expansions in signal processing and

pattern recognition, first introduced to turbulence community
by Lumley in 1967 as a postprocessing tool for spatio-
temporal data obtained from numerical simulation or exper-
imental work. Since then it has been widely used to extract
basis functions for reconstruction of coherent structures, low
dimensional modelling, and flow control.
The major shortcoming of POD method and its implemen-
tation to low dimensional modelling is the dependence of
POD basis on the flow parameters and geometry from which
they were extracted. However, successful works in kinetic
energy analysis, extraction of coherent structures, and low
dimensional description of near-wall turbulence are reported
continuously. The reader is referred to Lumley [1, 2, 3],
Sirovich [4], and Holmes et al. [5] for more details.
In spite of the tremendous efforts to apply POD to turbulent
flows, a full three-dimensional POD is applicable to a few
types of turbulent flows, e.g., isothermal fully developed
boundary layer, channel, pipe, and Couette flow. However,
Hasan and Sanghi [6] implemented a method that was ex-
plained by Lumley and Poje [7] for flows with density vari-
ation. The success of these works inspired us for a further
application of POD to a fully developed channel flow with
density variation (high density and temperature gradients). The
difficulty of applying POD to flows with heat transfer lies
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in the dimension of the different parameters, i.e., velocity,
density, and temperature. Application of POD to the cross-
correlation tensor of these parameters would be illogical.
Hence, the flow field must be scaled with appropriate parame-
ters to have the same dimension or it becomes dimensionless.

II. PROPER ORTHOGONAL DECOMPOSITION

Suppose we have a random velocity field, ui(·) and we
seek to find a deterministic vector field φi(·) which has the
maximum projection on our random vector field ui in a mean
square sense. We would like to find a whole new deterministic
field represented by φi(·) for which |γ|2 = |ui(·)φ∗

i (·)|2 is
maximized, i.e.,

|γ|2 =
(φi(·), ui(·))2
(φi(·), φi(·)) (1)

or ∫ ∫
D

Rij(·, ·′)φ∗
i (·)φj(·′)d(·)d(·′) = λ

∫
D

φi(·)φ∗
i (·)d(·) (2)

Where λ = |γ2|. So, if φi(·) maximizes (2), it means that if
the flow field is “projected” along φi(·), the average energy
content, λ, is larger than if the flow field is “projected” along
any other mathematical structure, e.g. a Fourier mode. In
the space orthogonal to this φi(·) the maximization process
can be repeated, and in this way a whole set of orthogonal
functions φi(·) can be determined. By calculus of variations it
can be shown that a necessary condition for φi(·) to maximize
expression (2) is that it is a solution of the following Fredholm
integral equation of the second type∫

D

Rij(·, ·′)φj(·′)d(·′) = λφi(·) (3)

where, Rij is the space-correlation tensor. This space-
correlation tensor is symmetric and positive definite. The
power of POD lies in the fact that the decomposition of the
flow field in the POD eigenfunctions converge optimally fast
in L2-sense. Most importantly, the decomposition is based
on the flow field itself; if the flow field is inhomogeneous
of finite extent, then Hilbert-Schmidt theory applies and the
obtained eigenfunctions are empirical, while if the flow field
is homogenous or periodic of infinite extent the eigenfunctions
are analytical (sines and cosines). The eigenfunctions of (3)
have some interesting mathematical properties. The eigenfunc-
tions are orthogonal as mentioned, and can be normalized;(
φk

i (·), φl
i(·)

)
= δkl. The closure of the span of the POD
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eigenfunctions is equal to the set of all realizable flow fields.
Thus, the original velocity field can be reconstructed from
them as follows:

ui(·) =
∞∑

n=0

anφn
i (·) (4)

The random coefficients an are functions of the variables not
used in the integral, and must be determined by projection
back onto the velocity field i.e.,

an =
∫

D

ui(·)φ∗n
j (·)d(·) (5)

They are uncorrelated and their mean values are the eigenval-
ues λ

λn = anamδnm (6)

The eigenvalues are ordered (meaning that the lowest order
eigenvalue is bigger than the next, and so on); i.e, λ1 > λ2 >
λ3 · · · . Thus, the representation is optimal in the sense that
the fewest number of terms is required to capture the energy.

III. FLOW FIELDS WITH DENSITY VARIATION

In many interesting practical flows, temperature fluctuations
contribute to the generation of velocity fluctuations and tur-
bulent kinetic energy. Temperature fluctuations cause density
fluctuations in the fluid at essentially constant pressure. The
density fluctuations cause a fluctuating body force which con-
tribute to the turbulent kinetic energy. To construct an optimal
representation for such flows using empirical eigenfunctions,
vector and scalar fields must be scaled with appropriate
parameters so that they have the same dimension or they
become dimensionless. A five-vector maximization problem
is formulated as follows:

|α|2 =
(ϕi(·), υi(·))2
(ϕi(·), ϕi(·)) (7)

Where, ϕi(·) are empirical candidate eigenfunctions and υi(·)
are scaled vector and scalar quantities, i.e., u

urms
, v

vrms
, w

wrms
,

�
�rms

, and θ
θrms

.

IV. POD OF THE CHANNEL FLOW WITH DENSITY
VARIATION

The flow field simulated is a fully developed turbulent flow
between two parallel walls. The walls are assumed to be kept
at different but constant temperatures without fluctuations.
The lower wall is hot and the upper one is cold. The flow
is driven by a constant pressure gradient in the stream-wise
direction and buoyancy forces in the wall-normal direction.
The flow field is periodic in the stream-wise direction and
statistics are dependent on the cross-stream and wall-normal
directions. The governing equations are the compressible
Navier-Stokes equations, continuity equation, energy equation,
and the equation of state for ideal gas. These equations
were non-dimensionalized using characteristic scales of each
variable. The fluid is assumed to be air and its viscosity,
μ, varies with temperature according to Sutherland equation,
Thermal conductivity, k, is obtained from viscosity using
Eucken equation. A new method linking the pressure and
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Fig. 1. Contour plot of stream-wise mean velocity U , wall-normal mean
velocity V , cross-stream mean velocity W , mean temperature Θ, and mean
density ρ. The arrows on U contour plot show the direction of rotation of the
Rayleigh-Benard counter-rotating vortices. The color bars to the right show
the magnitude of the contours.

density was used. A second order central difference method
was used for the spatial derivative. The fractional method
is applied for time evolution, which is based on the second
order Adams-Bashforth method for convection and diffusion
terms and implicit backward Euler method for the continuity
equation and pressure term. The computational domain was
chosen to be 15.84×1×7.68 and divided into 256×128×256
grid points in the stream-wise, wall-normal, and cross-stream
directions, respectively. Periodic boundary conditions were
applied in the stream-wise direction and non-slip boundary
condition was used on the walls. Simulation parameters are
as follows; Reynolds number Reτ = 150, Prandtl number
Pr = 0.71, the hot wall temperature Θh = 450, and the cold
wall temperature Θc = 350. The results were compared to
those of the Boussinesq approximation. Ohta et al. [8], and
Ohta et al. [9].
Figure 1 shows a contour plot of U , V , W , Θ, and ρ. To

improve the time averaged values, all statistics were averaged
over the stream-wise direction (homogenous direction). The
dominating coherent structures of the mean flow are counter
rotating vortices of the size of the channel width. These
counter rotating vortices are driven by the Rayleigh-Benard
convection between the two walls, and they do not have
fluctuating part. Figure 2 show the stream-wise mean velocity
component at three different cross-stream positions. The wall-
normal mean velocity component, V , convects the flow in
the directions shown by the arrows in figure 1. The cross-
stream mean velocity component, W , advects the flow in the
cross-stream direction from regions of positive values of W
to regions of negative values. Advection by the cross-stream
mean velocity component considerably affects the profile of
mean temperature and density profiles. The mean temperature,
Θ, decreases monotonically at positions 1 and 3. But, it has a
non-monotonic profile at position 2 due to horizontal advection
by W as shown in figure 3. Positions 1,2, and 3 are marked
by lines in figure 1 on U and Θ contours.
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Fig. 2. Mean velocity profile at cross-stream positions 1, 2, and 3
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Fig. 3. Mean temperature profile at cross-stream positions 1, 2, and 3

We wish to construct a representation of this flow using empir-
ical eigenfunctions. We have a random velocity, temperature
and density fields; ui(·), θ(·) and �(·), respectively. We seek
to find a deterministic vector field ϕi(·) that has the maximum
projection on our random fields in a mean square sense. We
would like to find a whole new deterministic fields represented
by ϕi(·) for which |εi|2 = |υi(·)ϕ∗

i (·)|2 are maximized. Due to
dimensional consideration, vector and scalar fields can not be
included in one maximization problem. Alternatively, vector
fields and scalar fields can be maximized separately as follows:

|γ|2 =
(ϕi(·), ui(·))2
(ϕi(·), ϕi(·)) (8)

|γ�|2 =
(ϕ4(·), �(·))2
(ϕ4(·), ϕ4(·)) (9)

|γθ|2 =
(ϕ5(·), θ(·))2
(ϕ5(·), ϕ5(·)) (10)

In the above approach, the cross-correlation between vector
fields and scalar fields is not considered. Hence, a better ap-
proach would be to define a five-vector maximization problem

using the three velocity components, temperature and density
fluctuations. In order to do this in a rational manner, we
need to normalize the various components in such a way that
they all have the same dimension. This raises the question
of scaling; what are the best parameters to scale the five
components, ui(·), θ(·), and �(·) ? There are two ways to
do this; either scaling the various components of the raw data
or scaling the cross-correlation tensor. [6] and [7] scaled the
two point cross correlation tensor with the root mean square
of the stream-wise velocity fluctuation (urms) and the root
mean square of density fluctuation (�rms). However, in this
study the flow field is scaled with the root mean square value
of each component, i.e., us = u

urms
, vs = v

vrms
, ws = w

wrms
,

�s = �
�rms

, and θs = θ
θrms

. This way the flow field becomes
dimensionless. Hence, the use of a five vector maximization
problem is straightforward,∫ ∫

D

Rs
ij(·, ·′)ψ∗

i (·)ψj(·′)d(·)d(·′) = Λ
∫

D

ψi(·)ψ∗
i (·)d(·)

(11)
And ψi(·) is a solution of the following Fredholm integral
equation: ∫

D

Rs
ij(·, ·′)ψj(·′)d(·′) = Λψi(·) (12)

The flow is homogenous in the stream-wise direction, x, and
inhomogeneous bounded in the wall-normal direction. The
fluctuating velocities, temperature, and density can be treated
as homogenous signals in the cross-stream direction, that is,
the two-point correlations are independent in origin in space
in this direction, at leat for such a low Reynolds number.
Fourier transforming equations (12) in x and z directions,
space correlation tensor Rs

ij(x, x′, y, y′, z, z′) becomes cross
spectra tensor Ss

ij(y, y′; k1, k3) and equations (12) can be
rewritten as follows:∫

D

Ss
ijk1k3

(y, y′)ψjk1k3
(y′)dy′ = Λk1k3ψik1k3

(y) (13)

Equation (13) can be formulated as an eigenvalue problem,
again trapezoidal rule with up to N = 65 non-uniformly
spaced grid points from one wall to the channel center line
was used to approximate the integral:

As
ijk1k3

ψjk1k3
= Λk1k3ψik1k3

(14)

For 3 dimensions (x, y, and z), 3 velocity components (us, vs,
and ws), density (�s) and temperature (θs) the above equations
can be rewritten in matrix form as follows:⎛

⎜⎜⎜⎜⎝

As
11 As

12 · · · As
15

As
21 As

22 · · · As
15

As
31 As

32 · · · As
15

As
41 As

42 · · · As
45

As
51 As

52 · · · As
55

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

ψ5

⎞
⎟⎟⎟⎟⎠ = Λ

⎛
⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

ψ5

⎞
⎟⎟⎟⎟⎠ (15)

POD integration domain was chosen to be equivalent to that
of a channel in minimal flow unit with the following grid dis-
tribution; (256×65×32). Solving these equations numerically
for each pair of wave numbers

(
k1 = 2πm

Lx
, k3 = 2πl

Lz

)
yields

POD basis ψ1, ψ2, ψ3, ψ4 and ψ5 and eigenspectra Λ.
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Fig. 4. Kinetic energy distribution among POD modes.
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Fig. 5. Kinetic energy distribution among cross-stream modes.

A. Kinetic Energy:

The total kinetic energy ξt is the sum over all POD modes,
stream-wise modes and cross-stream modes.

ξt =
∑

n

∑
m

∑
l

Λ(n)
ml (16)

from which, energy percentage as a function of wall-normal
mode index n and cross-stream mode index l is given by:

ξ(n) =
∑

m

∑
l Λ

(n)
ml∑

n

∑
m

∑
l Λ

(n)
ml

; ξl =
∑

n

∑
m Λ

(n)
ml∑

n

∑
m

∑
l Λ

(n)
ml

(17)

Figure 4 shows the kinetic energy distribution among the first
13 POD modes. Consistent with previous studies, POD mode
1, 2, and 3 contain about 60%, 20%, and 10%, respectively, of
the total kinetic energy. Figure 5 shows the kinetic energy dis-
tribution among the first 32 cross-stream modes. Cross-stream
mode two is the most energetic mode and the eigenspectra
peaks at off-origin location indicating a recurrence of coherent
structures in this direction.
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Fig. 6. Convergence of POD modes, contribution of 5 eigenmodes to u.

B. Reconstruction of the instantaneous velocity field

To understand how the POD represents the original velocity,
temperature, and density signal, the instantaneous fields were
reconstructed. The doubly Fourier transformed random ve-
locity, temperature, and density, ˆ̂uik1k3(y, t), ˆ̂

θk1k3(y, t), and
ˆ̂�k1k3

(y, t), can be reconstructed from the eigenfunctions as
follows:

ˆ̂uik1k3(y, t) = uirms

∞∑
n=1

a
(n)
k1k3

(t)ψi
(n)
k1k3

(y) (18)

ˆ̂
θk1k3(y, t) = θrms

∞∑
n=1

a
(n)
k1k3

(t)ψ5
(n)
k1k3

(y) (19)

ˆ̂�k1k3
(y, t) = �rms

∞∑
n=1

a
(n)
k1k3

(t)ψ4
(n)
k1k3

(y) (20)

And consequently, the Reynolds stresses, heat fluxes, and
density fluxes are given by

uiuj = uirmsujrms

∑
n

∑
m

∑
l

Λ(n)
ml ψi

(n)
ml (y)ψj

(n)∗
ml (y) (21)

uiθ = uirmsθrms

∑
n

∑
m

∑
l

Λ(n)
ml ψi

(n)
ml (y)ψ5

(n)∗
ml (y) (22)

�ui = �rmsuirms

∑
n

∑
m

∑
l

Λ(n)
ml ψi

(n)
ml (y)ψ4

(n)∗
ml (y) (23)

Figures 6 and 7 show how the reconstructed instantaneous
stream-wise velocity signal compare to the original data in
time and space. In both cases, five eigenmodes represents the
original signal favorably. Figures 8, 9, 10, 11, and 12 show
the reconstruction of urms, vrms, wrms, θrms and ρrms using
1, 2, 3, 4, and 5 POD eigenmodes. POD representation of the
flow field converges rapidly to the corresponding DNS data.
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Fig. 9. Convergence of POD modes, contribution of 1, 2, 3, 4, and 5
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V. CONCLUSION

A five-vector POD eigenvalue problem was developed to
include the cross-correlation of velocities, density, and temper-
ature. This way the POD maximizes the total energy including
effects of temperature and density. Since applying POD to
the cross-correlation or cross-spectra tensor of parameters
with different dimensions would be illogical, the flow field
therefore must be scaled with appropriate parameters to have
the same dimension or it becomes dimensionless. We have
scaled the raw data with the corresponding root mean square
values. The contribution from lower modes (big structures)
and higher modes (small structures) to the normal stresses
is always positive and POD mode 1, 2, and 3 contain about
60%, 20%, and 10%, respectively, of total kinetic energy.
Five eigenmodes reconstruction of second-order moment of
velocity, temperature and density converge rapidly to the
original DNS data.
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NOMENCLATURE
δi,j Kronecker delta
θ temperature fluctuation
Θ mean temperature
λ eigenvalue
Λ eigenvalue
ν viscosity
� density fluctuation
ρ mean density
φi i eigenfunction component
Φ eigenfunction vector
ψi i eigenfunction component
Ψ eigenfunction vector
â Fourier transform of a
a ensemble average of a
an POD coefficient
D Domain
h channel half-width
k1, k3 stream-wise, cross-stream wave numbers
l cross-stream mode
Lx, Lz size of space domain in x, z directions
m stream-wise mode
n POD mode (wall-normal mode)
N number of data points in y direction
rms root mean square
Reτ Reynolds number = u∗h

ν
Rij space correlation tensor
Sij cross-spectra tensor
ui i velocity fluctuation component
u∗ friction velocity
(·, ·′) inner product
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