Search results for: complex signal processing
3277 Remote Control Software for Rohde and Schwarz Instruments
Authors: Tomas Shejbal, Matej Petkov, Tomas Zalabsky, Jan Pidanic, Zdenek Nemec
Abstract:
The paper describes software for remote control and measuring with new Graphical User Interface for Rohde & Schwarz instruments. Software allows remote control through Ethernet and supports basic and advanced functions for control various type of instruments like network and spectrum analyzers, power meters, signal generators and oscilloscopes. Standard Commands for Programmable Instruments (SCPI) and Virtual Instrument Software Architecture (VISA) are used for remote control and setup of instruments. Developed software is modular with user friendly graphic user interface for each instrument with automatic identification of instruments.
Keywords: Remote control, Rohde&Schwarz, SCPI, VISA, MATLAB, spectum analyzer, network analyzer, oscilloscope, signal generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54053276 Artificial Generation of Visual Evoked Potential to Enhance Visual Ability
Authors: A. Vani, M. N. Mamatha
Abstract:
Visual signal processing in human beings occurs in the occipital lobe of the brain. The signals that are generated in the brain are universal for all the human beings and they are called Visual Evoked Potential (VEP). Generally, the visually impaired people lose sight because of severe damage to only the eyes natural photo sensors, but the occipital lobe will still be functioning. In this paper, a technique of artificially generating VEP is proposed to enhance the visual ability of the subject. The system uses the electrical photoreceptors to capture image, process the image, to detect and recognize the subject or object. This voltage is further processed and can transmit wirelessly to a BIOMEMS implanted into occipital lobe of the patient’s brain. The proposed BIOMEMS consists of array of electrodes that generate the neuron potential which is similar to VEP of normal people. Thus, the neurons get the visual data from the BioMEMS which helps in generating partial vision or sight for the visually challenged patient.Keywords: Visual evoked potential, OpenViBe, BioMEMS, Neuro prosthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14663275 Dynamic Web-Based 2D Medical Image Visualization and Processing Software
Authors: Abdelhalim. N. Mohammed, Mohammed. Y. Esmail
Abstract:
In the course of recent decades, medical imaging has been dominated by the use of costly film media for review and archival of medical investigation, however due to developments in networks technologies and common acceptance of a standard digital imaging and communication in medicine (DICOM) another approach in light of World Wide Web was produced. Web technologies successfully used in telemedicine applications, the combination of web technologies together with DICOM used to design a web-based and open source DICOM viewer. The Web server allowance to inquiry and recovery of images and the images viewed/manipulated inside a Web browser without need for any preinstalling software. The dynamic site page for medical images visualization and processing created by using JavaScript and HTML5 advancements. The XAMPP ‘apache server’ is used to create a local web server for testing and deployment of the dynamic site. The web-based viewer connected to multiples devices through local area network (LAN) to distribute the images inside healthcare facilities. The system offers a few focal points over ordinary picture archiving and communication systems (PACS): easy to introduce, maintain and independently platforms that allow images to display and manipulated efficiently, the system also user-friendly and easy to integrate with an existing system that have already been making use of web technologies. The wavelet-based image compression technique on which 2-D discrete wavelet transform used to decompose the image then wavelet coefficients are transmitted by entropy encoding after threshold to decrease transmission time, stockpiling cost and capacity. The performance of compression was estimated by using images quality metrics such as mean square error ‘MSE’, peak signal to noise ratio ‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when ‘coif3’ wavelet filter is used.Keywords: DICOM, discrete wavelet transform, PACS, HIS, LAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7953274 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces
Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet
Abstract:
In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.Keywords: Dropwise condensation, textured surface, image processing, watershed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6913273 Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.
Keywords: Autoregressive moving average, coefficients, back propagation, model parameters, neural network, weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22903272 Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles
Authors: S. K. Khosrowshahi, E. Güler
Abstract:
This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways.Keywords: Image processing, soil reinforcement, geosynthetics, simple shear test, shear strain profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10453271 Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks
Authors: L. Salhi, M. Talbi, A. Cherif
Abstract:
This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standard values thanks to a programmable database. Sounds are collected from normal people and patients, and then classified into two different categories. Speech data base is consists of several pathological and normal voices collected from the national hospital “Rabta-Tunis". Speech processing algorithm is conducted in a supervised mode for discrimination of normal and pathology voices and then for classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.Keywords: Formants, Neural Networks, Pathological Voices, Pitch, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28423270 Generalized Maximal Ratio Combining as a Supra-optimal Receiver Diversity Scheme
Authors: Jean-Pierre Dubois, Rania Minkara, Rafic Ayoubi
Abstract:
Maximal Ratio Combining (MRC) is considered the most complex combining technique as it requires channel coefficients estimation. It results in the lowest bit error rate (BER) compared to all other combining techniques. However the BER starts to deteriorate as errors are introduced in the channel coefficients estimation. A novel combining technique, termed Generalized Maximal Ratio Combining (GMRC) with a polynomial kernel, yields an identical BER as MRC with perfect channel estimation and a lower BER in the presence of channel estimation errors. We show that GMRC outperforms the optimal MRC scheme in general and we hereinafter introduce it to the scientific community as a new “supraoptimal" algorithm. Since diversity combining is especially effective in small femto- and pico-cells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to IP-based 4th generation networks.
Keywords: Bit error rate, femto-internet cells, generalized maximal ratio combining, signal-to-scattering noise ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21523269 A Pipelined FSBM Hardware Architecture for HTDV-H.26x
Authors: H. Loukil, A. Ben Atitallah, F. Ghozzi, M. A. Ben Ayed, N. Masmoudi
Abstract:
In MPEG and H.26x standards, to eliminate the temporal redundancy we use motion estimation. Given that the motion estimation stage is very complex in terms of computational effort, a hardware implementation on a re-configurable circuit is crucial for the requirements of different real time multimedia applications. In this paper, we present hardware architecture for motion estimation based on "Full Search Block Matching" (FSBM) algorithm. This architecture presents minimum latency, maximum throughput, full utilization of hardware resources such as embedded memory blocks, and combining both pipelining and parallel processing techniques. Our design is described in VHDL language, verified by simulation and implemented in a Stratix II EP2S130F1020C4 FPGA circuit. The experiment result show that the optimum operating clock frequency of the proposed design is 89MHz which achieves 160M pixels/sec.Keywords: SAD, FSBM, Hardware Implementation, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16413268 Improving Multi-storey Building Sensor Network with an External Hub
Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis
Abstract:
Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.Keywords: Wireless sensor networks, radio propagation, building monitoring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15513267 Parallel Vector Processing Using Multi Level Orbital DATA
Authors: Nagi Mekhiel
Abstract:
Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.Keywords: Memory organization, parallel processors, serial code, vector processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10623266 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures
Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hamizi Mohand, Hannachi Naceur Eddine
Abstract:
The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method; we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will developed.
Keywords: Seismic performance, Pushover method, characterization of seismic motion, harmfulness of the seismic signal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20553265 Exploring Inter-Relationships between Events to Identify Strategic Technological Competencies: A Combined Approach
Authors: Cláudio Santos, Madalena Araújo, Nuno Correia
Abstract:
The inherent complexity in nowadays- business environments is forcing organizations to be attentive to the dynamics in several fronts. Therefore, the management of technological innovation is continually faced with uncertainty about the future. These issues lead to a need for a systemic perspective, able to analyze the consequences of interactions between different factors. The field of technology foresight has proposed methods and tools to deal with this broader perspective. In an attempt to provide a method to analyze the complex interactions between events in several areas, departing from the identification of the most strategic competencies, this paper presents a methodology based on the Delphi method and Quality Function Deployment. This methodology is applied in a sheet metal processing equipment manufacturer, as a case study.Keywords: Competencies, Delphi Method, Quality Function Deployment, Technology Foresight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17033264 2D-Modeling with Lego Mindstorms
Authors: Miroslav Popelka, Jakub Nožička
Abstract:
The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.
Keywords: LEGO Mindstorms, ultrasonic sensor, Real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31093263 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio
Authors: O. S. Omorogiuwa, E. J. Omozusi
Abstract:
The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.
Keywords: Spectrum, interference, telecommunication, cognitive radio, frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8643262 Proposed Alternative System to Existing Traffic Signal System
Authors: Alluri Swaroopa, Lakkakula Venkata Narasimha Prasad
Abstract:
Alone with fast urbanization in world, traffic control became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.
Keywords: Bridges, junctions, ramps, urban traffic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31833261 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach
Authors: Abdallah Al-Shammari
Abstract:
This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solutionKeywords: Linear programming, Petrochemicals, stability analysis, uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19533260 Evaluation of GSM Radiation Power Density in Three Major Cities in Nigeria
Authors: B. O. Ayinmode, I. P. Farai
Abstract:
The levels of maximum power density of GSM signals in the cities of Lagos, Ibadan and Abuja were studied. Measurements were made with a calibrated hand held spectrum analyzer 200m away from 271 base stations, at 1.2m to the ground level. The maximum GSM 900 signal power density was 139.63μW/m2 in Lagos, 162.49μW/m2 in Ibadan and 5411.26μW/m2 in Abuja. Also, the maximum GSM 1800 signal power density was 296.82μW/m2 in Lagos, 116.82μW/m2 in Ibadan and 1263.00μW/m2 in Abuja. The level of power density of GSM 900 and GSM 1800 signals in the cities of Lagos, Ibadan and Abuja are far less than the recommended value of 4.5W/m2 for GSM 900 and 9.0 W/m2 for GSM 1800 by the ICNRP guideline. It can be concluded that exposure to GSM signals in these cities cannot contribute to the health detriments caused by thermal effects of radiofrequency radiation.
Keywords: Radiofrequency, power density, radiation exposure, base stations (BTS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25673259 Comparative Study of Different Enhancement Techniques for Computed Tomography Images
Authors: C. G. Jinimole, A. Harsha
Abstract:
One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.
Keywords: Computed tomography, enhancement techniques, increasing contrast, PSNR and MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13783258 Empirical Survey of the Solar System Based on the Fusion of GPS and Image Processing
Authors: S. Divya Gnanarathinam, S. Sundaramurthy
Abstract:
The tremendous increase in the population of the world creates the immediate need for the energy resources. All the people in the world need the sustainable energy resources which have low costs. Solar energy is appraised as one of the main energy resources in warm countries. The areas in the west of India like Rajasthan, Gujarat, etc. are immensely rich in solar energy resources. This paper deals with the development of dual axis solar tracker using Arduino board. Depending on the astronomical estimates of the sun from the GPS and sensor image processing outcomes, a methodology is proposed to locate the position of the sun to obtain the maximum solar energy. Based on the outcomes, the solar tracking system figures out whether to use image processing outcomes or astronomical estimates to attain the maximum efficiency of the solar panel. Finally, the experimental values obtained from the solar tracker for both the sunny and the rainy days are being tabulated.
Keywords: Dual axis solar tracker, Arduino board, LDR sensors, global positioning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15883257 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time
Authors: Jyh-Da Wei, Hsin-Chen Tsai
Abstract:
This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14173256 Automatic Segmentation of Retina Vessels by Using Zhang Method
Authors: Ehsan Saghapour, Somayeh Zandian
Abstract:
Image segmentation is an important step in image processing. Major developments in medical imaging allow physicians to use potent and non-invasive methods in order to evaluate structures, performance and to diagnose human diseases. In this study, an active contour was used to extract vessel networks from color retina images. Automatic analysis of retina vessels facilitates calculation of arterial index which is required to diagnose some certain retinopathies.Keywords: Active contour, retinal vessel segmentation, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23753255 Non-Invasive Technology on a Classroom Chair for Detection of Emotions Used for the Personalization of Learning Resources
Authors: Carlos Ramirez, Carlos Concha, Benjamin Valdes
Abstract:
Emotions are related with learning processes and physiological signals can be used to detect them for the personalization of learning resources and to control the pace of instruction. A model of relevant emotions has been developed, where specific combinations of emotions and cognition processes are connected and integrated with the concept of 'flow', in order to improve learning. The cardiac pulse is a reliable signal that carries useful information about the subject-s emotional condition; it is detected using a classroom chair adapted with non invasive EMFi sensor and an acquisition system that generates a ballistocardiogram (BCG), the signal is processed by an algorithm to obtain characteristics that match a specific emotional condition. The complete chair system is presented in this work, along with a framework for the personalization of learning resources.Keywords: Ballistocardiogram, emotions in learning, noninvasive sensors, personalization of learning resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16633254 High Performance Electrocardiogram Steganography Based on Fast Discrete Cosine Transform
Authors: Liang-Ta Cheng, Ching-Yu Yang
Abstract:
Based on fast discrete cosine transform (FDCT), the authors present a high capacity and high perceived quality method for electrocardiogram (ECG) signal. By using a simple adjusting policy to the 1-dimentional (1-D) DCT coefficients, a large volume of secret message can be effectively embedded in an ECG host signal and be successfully extracted at the intended receiver. Simulations confirmed that the resulting perceived quality is good, while the hiding capability of the proposed method significantly outperforms that of existing techniques. In addition, our proposed method has a certain degree of robustness. Since the computational complexity is low, it is feasible for our method being employed in real-time applications.Keywords: Data hiding, ECG steganography, fast discrete cosine transform, 1-D DCT bundle, real-time applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8123253 A Forward Automatic Censored Cell-Averaging Detector for Multiple Target Situations in Log-Normal Clutter
Authors: Musa'ed N. Almarshad, Saleh A. Alshebeili, Mourad Barkat
Abstract:
A challenging problem in radar signal processing is to achieve reliable target detection in the presence of interferences. In this paper, we propose a novel algorithm for automatic censoring of radar interfering targets in log-normal clutter. The proposed algorithm, termed the forward automatic censored cell averaging detector (F-ACCAD), consists of two steps: removing the corrupted reference cells (censoring) and the actual detection. Both steps are performed dynamically by using a suitable set of ranked cells to estimate the unknown background level and set the adaptive thresholds accordingly. The F-ACCAD algorithm does not require any prior information about the clutter parameters nor does it require the number of interfering targets. The effectiveness of the F-ACCAD algorithm is assessed by computing, using Monte Carlo simulations, the probability of censoring and the probability of detection in different background environments.Keywords: CFAR, Log-normal clutter, Censoring, Probabilityof detection, Probability of false alarm, Probability of falsecensoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19163252 An Enhanced Slicing Algorithm Using Nearest Distance Analysis for Layer Manufacturing
Authors: M. Vatani, A. R. Rahimi, F. Brazandeh, A. Sanati nezhad
Abstract:
Although the STL (stereo lithography) file format is widely used as a de facto industry standard in the rapid prototyping industry due to its simplicity and ability to tessellation of almost all surfaces, but there are always some defects and shortcoming in their usage, which many of them are difficult to correct manually. In processing the complex models, size of the file and its defects grow extremely, therefore, correcting STL files become difficult. In this paper through optimizing the exiting algorithms, size of the files and memory usage of computers to process them will be reduced. In spite of type and extent of the errors in STL files, the tail-to-head searching method and analysis of the nearest distance between tails and heads techniques were used. As a result STL models sliced rapidly, and fully closed contours produced effectively and errorless.Keywords: Layer manufacturing, STL files, slicing algorithm, nearest distance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41583251 On the Effectivity of Different Pseudo-Noise and Orthogonal Sequences for Speech Encryption from Correlation Properties
Authors: V. Anil Kumar, Abhijit Mitra, S. R. Mahadeva Prasanna
Abstract:
We analyze the effectivity of different pseudo noise (PN) and orthogonal sequences for encrypting speech signals in terms of perceptual intelligence. Speech signal can be viewed as sequence of correlated samples and each sample as sequence of bits. The residual intelligibility of the speech signal can be reduced by removing the correlation among the speech samples. PN sequences have random like properties that help in reducing the correlation among speech samples. The mean square aperiodic auto-correlation (MSAAC) and the mean square aperiodic cross-correlation (MSACC) measures are used to test the randomness of the PN sequences. Results of the investigation show the effectivity of large Kasami sequences for this purpose among many PN sequences.
Keywords: Speech encryption, pseudo-noise codes, maximallength, Gold, Barker, Kasami, Walsh-Hadamard, autocorrelation, crosscorrelation, figure of merit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20413250 Brain MRI Segmentation and Lesions Detection by EM Algorithm
Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane
Abstract:
In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21663249 Quadratic Pulse Inversion Ultrasonic Imaging(QPI): A Two-Step Procedure for Optimization of Contrast Sensitivity and Specificity
Authors: Mamoun F. Al-Mistarihi
Abstract:
We have previously introduced an ultrasonic imaging approach that combines harmonic-sensitive pulse sequences with a post-beamforming quadratic kernel derived from a second-order Volterra filter (SOVF). This approach is designed to produce images with high sensitivity to nonlinear oscillations from microbubble ultrasound contrast agents (UCA) while maintaining high levels of noise rejection. In this paper, a two-step algorithm for computing the coefficients of the quadratic kernel leading to reduction of tissue component introduced by motion, maximizing the noise rejection and increases the specificity while optimizing the sensitivity to the UCA is presented. In the first step, quadratic kernels from individual singular modes of the PI data matrix are compared in terms of their ability of maximize the contrast to tissue ratio (CTR). In the second step, quadratic kernels resulting in the highest CTR values are convolved. The imaging results indicate that a signal processing approach to this clinical challenge is feasible.Keywords: Volterra Filter, Pulse Inversion, Ultrasonic Imaging, Contrast Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15893248 Neural Network Based Approach for Face Detection cum Face Recognition
Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh
Abstract:
Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301