Search results for: censored regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 779

Search results for: censored regression

119 The Effects of Negative Electronic Word-of-Mouth and Webcare on Thai Online Consumer Behavior

Authors: Pongsatorn Tantrabundit, Lersak Phothong, Ong-art Chanprasitchai

Abstract:

Due to the emergence of the Internet, it has extended the traditional Word-of-Mouth (WOM) to a new form called “Electronic Word-of-Mouth (eWOM).” Unlike traditional WOM, eWOM is able to present information in various ways by applying different components. Each eWOM component generates different effects on online consumer behavior. This research investigates the effects of Webcare (responding message) from product/ service providers on negative eWOM by applying two types of products (search and experience). The proposed conceptual model was developed based on the combination of the stages in consumer decision-making process, theory of reasoned action (TRA), theory of planned behavior (TPB), the technology acceptance model (TAM), the information integration theory and the elaboration likelihood model. The methodology techniques used in this study included multivariate analysis of variance (MANOVA) and multiple regression analysis. The results suggest that Webcare does slightly increase Thai online consumer’s perceptions on perceived eWOM trustworthiness, information diagnosticity and quality. For negative eWOM, we also found that perceived eWOM Trustworthiness, perceived eWOM diagnosticity and quality have a positive relationship with eWOM influence whereas perceived valence has a negative relationship with eWOM influence in Thai online consumers.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
118 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion

Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri

Abstract:

In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of sandwich panel on maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.

Keywords: Finite element, honeycomb FRP sandwich panel, torsion, civil engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
117 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
116 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite

Authors: S. Sharma, U. Batra, S. Kapoor, A. Dua

Abstract:

In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the assynthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p<0.0001, two way ANOVA), however, these were independent of TEA addition (p>0.15, two way ANOVA). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p<0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.

Keywords: Capping agent, hydroxyapatite, regression analysis, sol-gel, 2- sample t-test, two-way ANOVA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
115 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
114 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications

Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar

Abstract:

Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.

Keywords: Boron Nitride Nanotube, Radiation Shielding, Young Modulus, Atomistic Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6679
113 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: Computational social science, movie preference, machine learning, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
112 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh

Abstract:

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
111 Profit Optimization for Solar Plant Electricity Production

Authors: Fl. Loury, P. Sablonière

Abstract:

In this paper a stochastic scenario-based model predictive control applied to molten salt storage systems in concentrated solar tower power plant is presented. The main goal of this study is to build up a tool to analyze current and expected future resources for evaluating the weekly power to be advertised on electricity secondary market. This tool will allow plant operator to maximize profits while hedging the impact on the system of stochastic variables such as resources or sunlight shortage.

Solving the problem first requires a mixed logic dynamic modeling of the plant. The two stochastic variables, respectively the sunlight incoming energy and electricity demands from secondary market, are modeled by least square regression. Robustness is achieved by drawing a certain number of random variables realizations and applying the most restrictive one to the system. This scenario approach control technique provides the plant operator a confidence interval containing a given percentage of possible stochastic variable realizations in such a way that robust control is always achieved within its bounds. The results obtained from many trajectory simulations show the existence of a ‘’reliable’’ interval, which experimentally confirms the algorithm robustness.

Keywords: Molten Salt Storage System, Concentrated Solar Tower Power Plant, Robust Stochastic Model Predictive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
110 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321
109 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios

Authors: Revoti Prasad Bora, Nikita Katyal

Abstract:

Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.

Keywords: Halo, cannibalization, promotion, baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
108 Daily Probability Model of Storm Events in Peninsular Malaysia

Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain

Abstract:

Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.

Keywords: Daily probability model, monsoon seasons, regions, storm events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
107 Service Quality and Consumer Behavior on Metered Taxi Services

Authors: Nattapong Techarattanased

Abstract:

The purposes of this research are to make comparisons in respect of the behaviors on the use of the services of metered taxi classified by the demographic factor and to study the influence of the recognition on service quality having the effect on usage behaviors of metered taxi services of consumers in Bangkok Metropolitan Areas. The samples used in this research were 400 metered taxi service users in Bangkok Metropolitan Areas and questionnaire was used as the tool for collecting the data. Analysis statistics are mean and multiple regression analysis. Results of the research revealed that the consumers recognize the overall quality of services in each aspect include tangible aspects of the service, responses to customers, assurance on the confidence, understanding and knowing of customers which is rated at the moderate level except the aspect of the assurance on the confidence and trustworthiness which are rated at a high level. For the result of hypothetical test, it is found that the quality in providing the services on the aspect of the assurance given to the customers has the effect on the usage behaviors of metered taxi services and the aspect of the frequency on the use of the services per month which in this connection. Such variable can forecast at one point nine percent (1.9%). In addition, quality in providing the services and the aspect of the responses to customers have the effect on the behaviors on the use of metered taxi services on the aspect of the expenses on the use of services per month which in this connection, such variable can forecast at two point one percent (2.1%).

Keywords: Consumer behavior, metered taxi, satisfaction, service quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3553
106 Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed

Abstract:

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Keywords: Roughness progression, empirical model, pavement performance, heavy duty pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
105 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: Road Safety, Prediction, Accident, Model, Qatar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2632
104 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
103 Earth Station Neural Network Control Methodology and Simulation

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

Keywords: Satellite, neural network, MATLAB, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
102 Customer Satisfaction and Effective HRM Policies: Customer and Employee Satisfaction

Authors: S. Anastasiou, C. Nathanailides

Abstract:

The purpose of this study is to examine the possible link between employee and customer satisfaction. The service provided by employees, help to build a good relationship with customers and can help at increasing their loyalty. Published data for job satisfaction and indicators of customer services of banks were gathered from relevant published works which included data from five different countries. The scores of customers and employees satisfaction of the different published works were transformed and normalized to the scale of 1 to 100. The data were analyzed and a regression analysis of the two parameters was used to describe the link between employee’s satisfaction and customer’s satisfaction. Assuming that employee satisfaction has a significant influence on customer’s service and the resulting customer satisfaction, the reviewed data indicate that employee’s satisfaction contributes significantly on the level of customer satisfaction in the Banking sector. There was a significant correlation between the two parameters (Pearson correlation R2=0.52 P<0.05). The reviewed data indicate that published data support the hypothesis that practical evidence link these two parameters. During the recent global economic crisis, the financial services sector was affected severely and job security, remuneration and recruitment of personnel of banks was in many countries, including Greece, significantly reduced. Nevertheless, modern organizations should always consider their personnel as a capital, which is the driving force for success in the future. Appropriate human resource management policies can increase the level of job satisfaction of the personnel with positive consequences for the level of customer’s satisfaction.

Keywords: Job satisfaction, job performance, customer service, banks, human resources management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5121
101 Prevalence, Associated Factors, and Help-Seeking Behavior of Psychological Distress among International Students at the National University of Malaysia

Authors: Khadiga Kahwa, Aniza Ismail

Abstract:

Depression, anxiety, and stress are associated with decreased role functioning, productivity, and quality of life. International students are more prone to psychological distress as they face many stressors while studying abroad. The objectives of the study were to determine the prevalence and associated factors of depression, anxiety, and stress among international students, their help-seeking behavior, and their awareness of the available on-campus mental support services. A cross-sectional study with a purposive sampling method was performed on 280 international students at Universiti Kebangsaan Malaysia (UKM) between the age of 18 and 35 years. The Depression Anxiety Stress Scale-21 (DASS-21) questionnaire was used anonymously to assess the mental health of students. Socio-demographic, help-seeking behavior, and awareness data were obtained. Independent sample t-test, one-way ANOVA test, and multiple linear regression were used to explore associated factors. The overall prevalence of depression, anxiety, and stress among international students were 58.9%, 71.8%, and 53.9%, respectively. Age was significantly associated with depression and anxiety. Ethnicity showed a significant association with depression and stress. No other factors were found to be significantly associated with psychological distress. Only 9.6% of the international students had sought help from on-campus mental support services. Students who were aware of the presence of such services were only 21.4% of the participants. In conclusion, this study addressed the gap in the literature on the mental health of international students and provided data that could be used in intervention programs to improve the mental health of the increasing number of international students in Malaysia.

Keywords: Anxiety, depression, stress, help-seeking behavior, students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
100 A Case Study on the Value of Corporate Social Responsibility Systems

Authors: José M. Brotons, Manuel E. Sansalvador

Abstract:

The relationship between Corporate Social Responsibility (CSR) and financial performance (FP) is a subject of great interest that has not yet been resolved. In this work, we have developed a new and original tool to measure this relation. The tool quantifies the value contributed to companies that are committed to CSR. The theoretical model used is the fuzzy discounted cash flow method. Two assumptions have been considered, the first, the company has implemented the IQNet SR10 certification, and the second, the company has not implemented that certification. For the first one, the growth rate used for the time horizon is the rate maintained by the company after obtaining the IQNet SR10 certificate. For the second one, both, the growth rates company prior to the implementation of the certification, and the evolution of the sector will be taken into account. By using triangular fuzzy numbers, it is possible to deal adequately with each company’s forecasts as well as the information corresponding to the sector. Once the annual growth rate of the sales is obtained, the profit and loss accounts are generated from the annual estimate sales. For the remaining elements of this account, their regression with the nets sales has been considered. The difference between these two valuations, made in a fuzzy environment, allows obtaining the value of the IQNet SR10 certification. Although this study presents an innovative methodology to quantify the relation between CSR and FP, the authors are aware that only one company has been analyzed. This is precisely the main limitation of this study which in turn opens up an interesting line for future research: to broaden the sample of companies.

Keywords: Corporate social responsibility, case study, financial performance, company valuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
99 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws

Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun

Abstract:

Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment methods that modify such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.

Keywords: Lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3326
98 Factors Influencing the Success of Mobile Phone Entrepreneurs at Central Plaza

Authors: NattapongTecharattanased

Abstract:

The purpose of this research was to study the factors that influenced the success of mobile phone entrepreneurs at Central Plaza. The sample group included 187 entrepreneurs at Central Plaza. A questionnaire was utilized as a tool to collect data. Statistics used in this research included frequency, percentage, mean, and standard deviation. Independent- sample t- test, one way ANOVA, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences.The findings disclosed that the majority of respondents were male between 25-40 years old, and held an undergraduate degree. The average income of respondents was between 15,001-25,000 baht. The majority of respondents had less than 5 years of working experience. In terms of personality, the findings revealed that expression and agreement were ranked at the highest level. Whereas, emotion stability, consciousness, open to new experience were ranked at high. From the hypotheses testing, the findings revealed that different genders had different success in their mobile phone business with different income from the last 6 months. However, difference in age, income, level of education, and experience affected the success in terms of income, number of customers, and overall success of business. Moreover, the factors of personalities included expression, agreement, emotion stability, consciousness, open to new experience, and competitive strategy. From the findings, these factors were able to predict mobile phone business success at 66.9 percent.

Keywords: Entrepreneur, Influencing Factors, Success, Mobile Phone Business.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
97 Identification of Seat Belt Wearing Compliance Associate Factors in Malaysia: Evidence-based Approach

Authors: L. Fauziana, M. F. Siti Atiqah, Z. A. Ahmad Noor Syukri

Abstract:

The aim of the study was to identify seat belt wearing factor among road users in Malaysia. Evidence-based approach through in-depth crash investigation was utilised to determine the intended objectives. The objective was scoped into crashes investigated by Malaysian Institute of Road Safety Research (MIROS) involving passenger vehicles within 2007 and 2010. Crash information of a total of 99 crash cases involving 240 vehicles and 864 occupants were obtained during the study period. Statistical test and logistic regression analysis have been performed. Results of the analysis revealed that gender, seat position and age were associated with seat belt wearing compliance in Malaysia. Males are 97.6% more likely to wear seat belt compared to females (95% CI 1.317 to 2.964). By seat position, the finding indicates that frontal occupants were 82 times more likely to be wearing seat belt (95% CI 30.199 to 225.342) as compared to rear occupants. It is also important to note that the odds of seat belt wearing increased by about 2.64% (95% CI 1.0176 to 1.0353) for every one year increase in age. This study is essential in understanding the Malaysian tendency in belting up while being occupied in a vehicle. The factors highlighted in this study should be emphasized in road safety education in order to increase seat belt wearing rate in this country and ultimately in preventing deaths due to road crashes.

Keywords: crash investigation, risk compensation, road safety, seat belt wearing, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
96 Modeling the Effect of Thermal Gradation on Steady-State Creep Behavior of Isotropic Rotating Disc Made of Functionally Graded Material

Authors: Tania Bose, Minto Rattan, Neeraj Chamoli

Abstract:

In this paper, an attempt has been made to study the effect of thermal gradation on the steady-state creep behavior of rotating isotropic disc made of functionally graded material using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate have been taken for analysis. The stress and strain rate distributions have been calculated for the discs rotating at elevated temperatures having thermal gradation. The material parameters of creep vary radially and have been estimated by regression fit of the available experimental data. Investigations for discs made up of linearly increasing particle content operating under linearly decreasing temperature from inner to outer radii have been done using von Mises’ yield criterion. The results are displayed and compared graphically in designer friendly format for the above said disc profile with the disc made of particle reinforced composite operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: Creep, functionally graded isotropic material, steady-state, thermal gradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
95 Effects of Process Parameters on the Yield of Oil from Coconut Fruit

Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude

Abstract:

Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35 and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P<0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26mgKOH-1g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2hrs, leaching temperature of 50oC and solute/solvent ratio of 0.05g/ml.

Keywords: Coconut, oil-extraction, optimization, physicochemical, proximate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
94 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria

Authors: Abdullahi Jibrin, Aishetu Abdulkadir

Abstract:

The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. F-test values for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.

Keywords: Allometriy, biomass, carbon stock, model, regression equation, woodland, inventory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2788
93 Ownership, Management Responsibility and Corporate Performance of the Listed Firms in Kazakhstan

Authors: Gulnara Moldasheva

Abstract:

The research explores the relationship between management responsibility and corporate governance of listed companies in Kazakhstan. This research employs firm level data of selected listed non-financial firms and firm level data “operational” financial sector, consisted from banking sector, insurance companies and accumulated pension funds using multivariate regression analysis under fixed effect model approach. Ownership structure includes institutional ownership, managerial ownership and private investor’s ownership. Management responsibility of the firm is expressed by the decision of the firm on amount of leverage. Results of the cross sectional panel study for non-financial firms showed that only institutional shareholding is significantly negatively correlated with debt to equity ratio. Findings from “operational” financial sector show that leverage is significantly affected only by the CEO/Chair duality and the size of financial institutions, and insignificantly affected by ownership structure. Also, the findings show, that there is a significant negative relationship between profitability and the debt to equity ratio for non-financial firms, which is consistent with pecking order theory. Generally, the found results suggest that corporate governance and a management responsibility play important role in corporate performance of listed firms in Kazakhstan.

Keywords: Corporate governance, corporate performance, debt to equity ratio, ownership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
92 Empirical Evidence on Equity Valuation of Thai Firms

Authors: Somchai Supattarakul, Anya Khanthavit

Abstract:

This study aims at providing empirical evidence on a comparison of two equity valuation models: (1) the dividend discount model (DDM) and (2) the residual income model (RIM), in estimating equity values of Thai firms during 1995-2004. Results suggest that DDM and RIM underestimate equity values of Thai firms and that RIM outperforms DDM in predicting cross-sectional stock prices. Results on regression of cross-sectional stock prices on the decomposed DDM and RIM equity values indicate that book value of equity provides the greatest incremental explanatory power, relative to other components in DDM and RIM terminal values, suggesting that book value distortions resulting from accounting procedures and choices are less severe than forecast and measurement errors in discount rates and growth rates. We also document that the incremental explanatory power of book value of equity during 1998-2004, representing the information environment under Thai Accounting Standards reformed after the 1997 economic crisis to conform to International Accounting Standards, is significantly greater than that during 1995-1996, representing the information environment under the pre-reformed Thai Accounting Standards. This implies that the book value distortions are less severe under the 1997 Reformed Thai Accounting Standards than the pre-reformed Thai Accounting Standards.

Keywords: Dividend Discount Model, Equity Valuation Model, Residual Income Model, Thai Stock Market

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
91 Study of Storms on the Javits Center Green Roof

Authors: A. Cho, H. Sanyal, J. Cataldo

Abstract:

A quantitative analysis of the different variables on both the South and North green roofs of the Jacob K. Javits Convention Center was taken to find mathematical relationships between net radiation and evapotranspiration (ET), average outside temperature, and the lysimeter weight. Groups of datasets were analyzed, and the relationships were plotted on linear and semi-log graphs to find consistent relationships. Antecedent conditions for each rainstorm were also recorded and plotted against the volumetric water difference within the lysimeter. The first relation was the inverse parabolic relationship between the lysimeter weight and the net radiation and ET. The peaks and valleys of the lysimeter weight corresponded to valleys and peaks in the net radiation and ET respectively, with the 8/22/15 and 1/22/16 datasets showing this trend. The U-shaped and inverse U-shaped plots of the two variables coincided, indicating an inverse relationship between the two variables. Cross variable relationships were examined through graphs with lysimeter weight as the dependent variable on the y-axis. 10 out of 16 of the plots of lysimeter weight vs. outside temperature plots had R² values > 0.9. Antecedent conditions were also recorded for rainstorms, categorized by the amount of precipitation accumulating during the storm. Plotted against the change in the volumetric water weight difference within the lysimeter, a logarithmic regression was found with large R² values. The datasets were compared using the Mann Whitney U-test to see if the datasets were statistically different, using a significance level of 5%; all datasets compared showed a U test statistic value, proving the null hypothesis of the datasets being different from being true.

Keywords: Green roof, green infrastructure, Javits Center, evapotranspiration, net radiation, lysimeter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 378
90 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include the cost of infrastructure, personnel, and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion, and various indirect costs in terms of air transport. This research aims to predict the probabilistic crash prediction of vehicles using Machine Learning due to natural and structural reasons by excluding spontaneous reasons, like overspeeding, etc., in the United States. These factors range from meteorological elements such as weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity, to human-made structures, like road structure components such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, etc. The probabilities are categorized into ten distinct classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes in all states collected by the US government. The probability of the crash was determined by employing Multinomial Expected Value, and a classification label was assigned accordingly. We applied three classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-depth insights through exploratory data analysis.

Keywords: Road safety, crash prediction, exploratory analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83