Search results for: wood plastic composite.
539 Finite Element Analysis of Composite Frames in Wheelchair under Upward Loading
Authors: Thomas Jin-Chee Liu, Jin-Wei Liang, Wei-Long Chen, Teng-Hui Chen
Abstract:
The finite element analysis is adopted in this primary study. Using the Tsai-Wu criterion and delamination criterion, the stacking sequence [45/04/-454/904]s is the final optimal design for the wheelchair frame. On the contrary, the uni-directional laminates, i.e. [9013]s, [4513]s and [-4513]s, are bad designs due to the higher failure indexes.
Keywords: Wheelchair frame, stacking sequence, failure index, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3763538 A Study on the Heading of Spur Gears: Numerical Analysis and Experiments
Authors: M.Zadshakouyan, E.Abdi Sobbouhi, H.Jafarzadeh
Abstract:
In this study, the precision heading process of spur gears has been investigated by means of numerical analysis. The effect of some parameters such as teeth number and module on the forming force and material flow were presented. The simulation works were performed rigid-plastic finite element method using DEFORM 3D software. In order to validate the estimated numerical results, they were compared with those obtained experimentally during heading of spur gear using lead as a model material. Results showed that the optimum number of gear teeth is between 10 to 20, that is because of being the specific pressure in its minimum value.Keywords: Heading, spur gear, numerical analysis, experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954537 Carbon-Based Electrochemical Detection of Pharmaceuticals from Water
Authors: M. Ardelean, F. Manea, A. Pop, J. Schoonman
Abstract:
The presence of pharmaceuticals in the environment and especially in water has gained increasing attention. They are included in emerging class of pollutants, and for most of them, legal limits have not been set-up due to their impact on human health and ecosystem was not determined and/or there is not the advanced analytical method for their quantification. In this context, the development of various advanced analytical methods for the quantification of pharmaceuticals in water is required. The electrochemical methods are known to exhibit the great potential for high-performance analytical methods but their performance is in direct relation to the electrode material and the operating techniques. In this study, two types of carbon-based electrodes materials, i.e., boron-doped diamond (BDD) and carbon nanofiber (CNF)-epoxy composite electrodes have been investigated through voltammetric techniques for the detection of naproxen in water. The comparative electrochemical behavior of naproxen (NPX) on both BDD and CNF electrodes was studied by cyclic voltammetry, and the well-defined peak corresponding to NPX oxidation was found for each electrode. NPX oxidation occurred on BDD electrode at the potential value of about +1.4 V/SCE (saturated calomel electrode) and at about +1.2 V/SCE for CNF electrode. The sensitivities for NPX detection were similar for both carbon-based electrode and thus, CNF electrode exhibited superiority in relation to the detection potential. Differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV) techniques were exploited to improve the electroanalytical performance for the NPX detection, and the best results related to the sensitivity of 9.959 µA·µM-1 were achieved using DPV. In addition, the simultaneous detection of NPX and fluoxetine -a very common antidepressive drug, also present in water, was studied using CNF electrode and very good results were obtained. The detection potential values that allowed a good separation of the detection signals together with the good sensitivities were appropriate for the simultaneous detection of both tested pharmaceuticals. These results reclaim CNF electrode as a valuable tool for the individual/simultaneous detection of pharmaceuticals in water.
Keywords: Boron-doped diamond electrode, carbon nanofiber-epoxy composite electrode, emerging pollutants, pharmaceuticals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267536 Using Sugar Mill Waste for Biobased Epoxy Composites
Authors: Ulku Soydal, Mustafa Esen Marti, Gulnare Ahmetli
Abstract:
In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER.Keywords: Epoxy resin, biocomposite, lime waste, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729535 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745534 Reduce, Reuse and Recycle: Grand Challenges in Construction Recovery Process
Authors: Abioye A. Oyenuga, Rao Bhamidimarri
Abstract:
Hurling a successful Construction and Demolition Waste (C&DW) recycling operation around the globe is a challenge today, predominantly because secondary materials markets are yet to be integrated. Reducing, Reusing and recycling of (C&DW) have been employed over the years, and various techniques have been investigated. However, the economic and environmental viability of its application seems limited. This paper discusses the costs and benefits in using secondary materials and focus on investigating reuse and recycling process for five major types of construction materials: concrete, metal, wood, cardboard/paper and plasterboard. Data obtained from demolition specialists and contractors are considered and evaluated. The research paper found that construction material recovery process fully incorporate a 3R’s principle contributing to saving energy and natural resources. This scrutiny leads to the empathy of grand challenges in construction material recovery process. Recommendations to deepen material recovery process are also discussed.
Keywords: Construction & Demolition Waste (C&DW), 3R concept, Recycling, Reuse, Life-Cycle Assessment (LCA), Waste Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5098533 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum
Authors: Krasimira Georgieva, Yordan Denev
Abstract:
Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.
Keywords: Gas-filled thermosets, mechanical properties, phosphogypsum, urea-formaldehyde resins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713532 Towards Creation of Sustainable Enclaves for Small and Medium-Size Enterprises in Kumasi, Ghana
Authors: Paul Amoateng, Patrick B. Cobbinah, Kwasi Ofori-Kumah
Abstract:
Although the importance of small and medium-size enterprises (SMEs) to local development is globally recognized, less attention is given to their design, development and promotion particularly in developing countries. The main focus of this paper is to examine the process of designing, developing and promoting SMEs in developing countries. Results of a study conducted in a SMEs’ enclave in Kumasi (Ghana) are presented and discussed. Results show that although SMEs in developing countries remain a major source of livelihood for many individuals, their potential contribution to local development can be enhanced and sustained through the creation of common geographical enclaves for related SMEs. Findings indicated that the concentration of SMEs involved in wood processing in one location in Kumasi has reduced the cost of production (e.g., transportation), and resulted in marginal increase in sales for many SMEs, despite the widespread challenges of lack of access to credit and low promotion of products.
Keywords: Developing countries, Kumasi, local development, small and medium-size enterprises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371531 Mechanical Properties and Microstructural Properties of CrSiN Coating
Authors: Dhiflaoui Hafedh, Khlifi Kaouthar, Ben Cheikh Larbi Ahmed
Abstract:
The present study deals with the characterization of CrSiN coatings obtained by PVD magnetron sputtering systems. CrSiN films were deposited with different Si contents, in order to check the effect of at.% variation on the different properties of the Cr–N system. Coatings were characterized by scanning electron microscopy (SEM) for thickness measurements, X-ray diffraction. Surface morphology and the roughness characteristics were explored using AFM, Mechanicals properties, elastic and plastic deformation resistance of thin films were investigated using nanoindentation test. We observed that the Si addition improved the hardness and the Young’s modulus of the Cr–N system. Indeed, the hardness value is 18,56 GPa for CrSiN coatings. Besides, the Young’s modulus value is 224,22 GPa for CrSiN coatings for Si content of 1.2 at.%.Keywords: Thin film, mechanicals properties, PVD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928530 The Effect of Alternative Fuel Combustion in the Cement Kiln Main Burner on Production Capacity and Improvement with Oxygen Enrichment
Authors: W. K. Hiromi Ariyaratne, Morten C. Melaaen, Lars-André Tokheim
Abstract:
A mathematical model based on a mass and energy balance for the combustion in a cement rotary kiln was developed. The model was used to investigate the impact of replacing about 45 % of the primary coal energy by different alternative fuels. Refuse derived fuel, waste wood, solid hazardous waste and liquid hazardous waste were used in the modeling. The results showed that in order to keep the kiln temperature unchanged, and thereby maintain the required clinker quality, the production capacity had to be reduced by 1-15 %, depending on the fuel type. The reason for the reduction is increased exhaust gas flow rates caused by the fuel characteristics. The model, which has been successfully validated in a full-scale experiment, was also used to show that the negative impact on the production capacity can be avoided if a relatively small part of the combustion air is replaced by pure oxygen.Keywords: Alternative fuels, Cement kiln main burner, Oxygen enrichment, Production capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5529529 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions
Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann
Abstract:
Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.
Keywords: Composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828528 Evaluation on Bearing Capacity of Ring Foundations on two-Layered Soil
Authors: R. Ziaie Moayed, V. Rashidian, E. Izadi
Abstract:
This paper utilizes a finite element analysis to study the bearing capacity of ring footings on a two-layered soil. The upper layer, that the footing is placed on it, is soft clay and the underneath layer is a cohesionless sand. For modeling soils, Mohr–Coulomb plastic yield criterion is employed. The effects of two factors, the clay layer thickness and the ratio of internal radius of the ring footing to external radius of the ring, have been analyzed. It is found that the bearing capacity decreases as the value of ri / ro increases. Although, as the clay layer thickness increases the bearing capacity was alleviated gradually.Keywords: Bearing capacity, Ring footing, Two-layered soil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4042527 Numerical Analysis of Hydrogen Transport using a Hydrogen-Enhanced Localized Plasticity Mechanism
Authors: Seul-Kee Kim, Chi-Seung Lee, Myung-Hyun Kim, Jae-Myung Lee
Abstract:
In this study, the hydrogen transport phenomenon was numerically evaluated by using hydrogen-enhanced localized plasticity (HELP) mechanisms. Two dominant governing equations, namely, the hydrogen transport model and the elasto-plastic model, were introduced. In addition, the implicitly formulated equations of the governing equations were implemented into ABAQUS UMAT user-defined subroutines. The simulation results were compared to published results to validate the proposed method.Keywords: Hydrogen-enhanced localized plasticity (HELP), Hydrogen embrittlement, Hydrogen transport analysis, ABAQUS UMAT, Finite element method (FEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427526 Comparison of Material Constitutive Models Used in FEA of Low Volume Roads
Authors: Lenka Ševelová, Aleš Florian
Abstract:
Appropriate and progressive tool for analyzing behavior of low volume roads are probabilistic models used in reliability analyses. The necessary part of the probabilistic model is the deterministic model of structural behavior. The FE model of low volume roads is created in the ANSYS software. It is able to determine the state of stress and deformation in any point of the structure and thus generate data required for the reliability analysis. The paper compares two material constitutive models used for modeling of unbound non-homogenous materials used in low volume roads. The first model is linear elastic model according to Hook theory (H model), the second one is nonlinear elastic-plastic Drucker-Prager model (D-P model).
Keywords: FEA, FEM, geotechnical materials, low volume roads, material constitutive models, pavement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2886525 Discrete Element Modeling on Bearing Capacity Problems
Authors: N. Li, Y. M. Cheng
Abstract:
In this paper, the classical bearing capacity problem is re-considered from discrete element analysis. In the discrete element approach, the bearing capacity problem is considered from the elastic stage to plastic stage to rupture stage (large displacement). The bearing capacity failure mechanism of a strip footing on soil is investigated, and the influence of micro-parameters on the bearing capacity of soil is also observed. It is found that the distinct element method (DEM) gives very good visualized results, and basically coincides well with that derived by the classical methods.
Keywords: Bearing capacity, distinct element method, failure mechanism, large displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490524 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding
Authors: Indunil Jayatilake, Warna Karunasena
Abstract:
Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.
Keywords: Debonding, dynamic response, finite element modelling, FRP beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 521523 Determination of Small Shear Modulus of Clayey Sand Using Bender Element Test
Authors: R. Sadeghzadegan, S. A. Naeini, A. Mirzaii
Abstract:
In this article, the results of a series of carefully conducted laboratory test program were represented to determine the small strain shear modulus of sand mixed with a range of kaolinite including zero to 30%. This was experimentally achieved using a triaxial cell equipped with bender element. Results indicate that small shear modulus tends to increase, while clay content decreases and effective confining pressure increases. The exponent of stress in the power model regression analysis was not sensitive to the amount of clay content for all sand clay mixtures, while coefficient A was directly affected by change in clay content.
Keywords: Small shear modulus, bender element test, plastic fines, sand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129522 Creep Transition in a Thin Rotating Disc Having Variable Density with Inclusion
Authors: Pankaj, Sonia R. Bansal
Abstract:
Creep stresses and strain rates have been obtained for a thin rotating disc having variable density with inclusion by using Seth-s transition theory. The density of the disc is assumed to vary radially, i.e. ( ) 0 ¤ü ¤ü r/b m - = ; ¤ü 0 and m being real positive constants. It has been observed that a disc, whose density increases radially, rotates at higher angular speed, thus decreasing the possibility of a fracture at the bore, whereas for a disc whose density decreases radially, the possibility of a fracture at the bore increases.Keywords: Elastic-Plastic, Inclusion, Rotating disc, Stress, Strain rates, Transition, variable density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739521 Waste to Biofuel by Torrefaction Technology
Authors: Jyh-Cherng Chen, Yu-Zen Lin, Wei-Zhi Chen
Abstract:
Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impuritiesand increase the energy density of biowaste effectively.To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric valueof torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal.
Keywords: Torrefaction, waste to energy, calorie, biofuel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038520 Comparative Study of Eva and Waste Polymer Modified Bitumen
Authors: Mohammed Sadeque, K. A. Patil
Abstract:
Polymer-modified bitumen is used to combat different pavement distresses and to increase the life span of pavement. Unmodified bitumen cannot perform better with the range extreme minimum and maximum pavement temperatures. The polymers commonly used to modify the bitumen are ethylene vinyl acetate (EVA) styrene butadiene styrene (SBS). The aim this study to compare the performance of EVA modified bitumen with the bitumen modified by waste low density polyethylene (LDPE), polypropylene (PP) obtained from waste carry bags and waste tyre rubber (CR) to encourage the use of waste polymer whose disposal is big problem today, in place of costly virgin polymer. From the experimental study, it was found that waste polymers are also effective in improving the properties bitumen as that of virgin polymer.
Keywords: Waste plastic, LDPE, PP, Modified bitumen, EVA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3678519 Survey Gamma Radiation Measurements in Commercially-used Natural Tiling Rocks in Iran
Authors: A.Abbasi, F.Mirekhtiary
Abstract:
The gamma radiation in samples of a variety of natural tiling rocks (granites) produced and imported in Iran use in the building industry was measured, employing high-resolution Gamma-ray spectroscopy. The rock samples were pulverized, sealed in 0.5 liter plastic Marinelli beakers, and measured in the laboratory with an accumulating time between 50000 and 80000 second each. From the measured Gamma-ray spectra, activity concentrations were determined for 232Th (range from 6.5 to 172.2 Bq kg-1), 238U (from 7.5 to 178.1 Bq kg-1 ),226Ra( from 3.8 to 94.2 Bq kg-1 ) 40K (from 556.9 to 1539.2 Bq kg-1). From the 29 samples measured in this study, “Nehbndan ( Berjand )" appears to present the highest concentrations for 232Th,“Big Red Flower (China) "for 238U , “ Khoram dareh" for 226 Ra and “ Peranshahr" for 40K , respectively.Keywords: activity concentration, natural radioactivity, tilingrocks (granites)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408518 Axisymmetric Vibrations of Layered Cylindrical Shells with Cracks
Authors: Larissa Roots
Abstract:
Vibrations of circular cylindrical shells made of layered composite materials are considered. The shells are weakened by circumferential cracks. The influence of circumferential cracks with constant depth on the vibration of the shell is prescribed with the aid of a matrix of local flexibility coupled with the coefficient of the stress intensity known in the linear elastic fracture mechanics. Numerical results are presented for the case of the shell with one circular crack.
Keywords: Layered shell, axisymmetric vibration, crack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781517 Finite Element Modelling of Log Wall Corner Joints
Authors: R. Kalantari, G. Hafeez
Abstract:
The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. Variability of 8% is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.
Keywords: dovetail joint, finite element modelling, log shear walls, standard joint
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498516 Seismic Vulnerability Mitigation of Non-Engineered Buildings
Authors: Muhammad Tariq A. Chaudhary
Abstract:
The tremendous loss of life that resulted in the aftermath of recent earthquakes in developing countries is mostly due to the collapse of non-engineered and semi-engineered building structures. Such structures are used as houses, schools, primary healthcare centers and government offices. These building are classified structurally into two categories viz. non-engineered and semi-engineered. Non-engineered structures include: adobe, unreinforced masonry (URM) and wood buildings. Semi-engineered buildings are mostly low-rise (up to 3 story) light concrete frame structures or masonry bearing walls with reinforced concrete slab. This paper presents an overview of the typical damage observed in non-engineered structures and their most likely causes in the past earthquakes with specific emphasis on the performance of such structures in the 2005 Kashmir earthquake. It is demonstrated that seismic performance of these structures can be improved from life-safety viewpoint by adopting simple low-cost modifications to the existing construction practices. Incorporation of some of these practices in the reconstruction efforts after the 2005 Kashmir earthquake are examined in the last section for mitigating seismic risk hazard.
Keywords: Kashmir earthquake, non-engineered buildings, seismic hazard, structural details, structural strengthening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943515 New Moment Rotation Model of Single Web Angle Connections
Authors: Zhengyi Kong, Seung-Eock Kim
Abstract:
Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate their moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The identical geometric and material conditions with Lipson’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range of mechanism, simpler and more accurate hyperbolic function models are proposed.Keywords: Single-web angle connections, finite element method, moment and rotation, hyperbolic function models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294514 Experimental Study of Different Types of Concrete in Uniaxial Compression Test
Authors: Khashayar Jafari, Mostafa Jafarian Abyaneh, Vahab Toufigh
Abstract:
Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC.
Keywords: Polymer concrete, ordinary cement concrete, lightweight concrete, uniaxial compression test, volumetric strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164513 Destination of the Solid Waste Generated at the Agricultural Products Wholesale Market in Brazil
Authors: C de Almeida, I. M. Dal Fabbro
Abstract:
The Brazilian Agricultural Products Wholesale Market fits well as example of residues generating system, reaching 750 metric tons per month of total residues, from which 600 metric tons are organic material and 150 metric tons are recyclable materials. Organic material is basically composed of fruit, vegetables and flowers leftovers from the products commercialization. The recyclable compounds are generate from packing material employed in the commercialization process. This research work devoted efforts in carrying quantitative analysis of the residues generated in the agricultural enterprise at its final destination. Data survey followed the directions implemented by the Residues Management Program issued by the agricultural enterprise. It was noticed from that analysis the necessity of changing the logistics applied to the recyclable material collecting process. However, composting process was elected as the organic compounds destination which is considered adequate for a material composed of significant percentage of organic matter far higher than wood, cardboard and plastics contents.
Keywords: Composting, environment, recycling, solid waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020512 Synthesis and Study the Effect of HNTs on PVA/Chitosan Composite Material
Authors: Malek Ali
Abstract:
Composites materials of Poly (vinyl alcohol) (PVA)/Chitosan (CS) have been synthesized and characterized successfully. HNTs have been added to composites to enhance the mechanical and degradation properties by hydrogen bonding interactions, compatibility, and chemical crosslink between HNTs and PVA. PVA/CS/HNTs composites prepared with different concentration ratio. SEM micrographs of composites surface showed that more agglomeration with more chitosan ratio. Mechanical and degradation properties were characterized and the result indicates that Mechanical and degradation of 80%PVA/5%Chitosan/15%HNTs higher than the others PVA/CS/HNTs composites.
Keywords: PVA/Chitosan, Composites, PVA/CS/HNTs, HNTs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679511 Fatigue Properties and Strength Degradation of Carbon Fibber Reinforced Composites
Authors: Pasquale Verde, Giuseppe Lamanna
Abstract:
A two-parameter fatigue model explicitly accounting for the cyclic as well as the mean stress was used to fit static and fatigue data available in literature concerning carbon fiber reinforced composite laminates subjected tension-tension fatigue. The model confirms the strength–life equal rank assumption and predicts reasonably the probability of failure under cyclic loading. The model parameters were found by best fitting procedures and required a minimum of experimental tests.
Keywords: Fatigue life, strength, composites, Weibull distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989510 Nanocrystalline Mg-3%Al Alloy: its Synthesis and Investigation of its Tensile Behavior
Authors: A. Mallick
Abstract:
The tensile properties of Mg-3%Al nanocrystalline alloys were investigated at different test environment. Bulk nanocrystalline samples of these alloy was successfully prepared by mechanical alloying (MA) followed by cold compaction, sintering, and hot extrusion process. The crystal size of the consolidated milled sample was calculated by X-Ray line profile analysis. The deformation mechanism and microstructural characteristic at different test condition was discussed extensively. At room temperature, relatively lower value of activation volume (AV) and higher value of strain rate sensitivity (SRS) suggests that new rate controlling mechanism accommodating plastic flow in the present nanocrystalline sample. The deformation behavior and the microstructural character of the present samples were discussed in details.Keywords: Nanocrystalline, tensile properties, temperature effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460