Search results for: temperature dependent viscosity
2721 Influence of Dilution and Lean-premixed on Mild Combustion in an Industrial Burner
Authors: Sh.Khalilarya, H.Oryani, S.Jafarmadar, H.Khatamnezhad, A.Nemati
Abstract:
Understanding of how and where NOx formation occurs in industrial burner is very important for efficient and clean operation of utility burners. Also the importance of this problem is mainly due to its relation to the pollutants produced by more burners used widely of gas turbine in thermal power plants and glass and steel industry. In this article, a numerical model of an industrial burner operating in MILD combustion is validated with experimental data.. Then influence of air flow rate and air temperature on combustor temperature profiles and NOX product are investigated. In order to modification this study reports on the effects of fuel and air dilution (with inert gases H2O, CO2, N2), and also influence of lean-premixed of fuel, on the temperature profiles and NOX emission. Conservation equations of mass, momentum and energy, and transport equations of species concentrations, turbulence, combustion and radiation modeling in addition to NO modeling equations were solved together to present temperature and NO distribution inside the burner. The results shows that dilution, cause to a reduction in value of temperature and NOX emission, and suppresses any flame propagation inside the furnace and made the flame inside the furnace invisible. Dilution with H2O rather than N2 and CO2 decreases further the value of the NOX. Also with raise of lean-premix level, local temperature of burner and the value of NOX product are decreases because of premixing prevents local “hot spots" within the combustor volume that can lead to significant NOx formation. Also leanpremixing of fuel with air cause to amount of air in reaction zone is reach more than amount that supplied as is actually needed to burn the fuel and this act lead to limiting NOx formationKeywords: Mild combustion, Flameless, Numerical simulation, Burner, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17762720 Analysis of Precipitation and Temperature Trends in Sefid-Roud Basin
Authors: Amir Gandomkar, Tahereh Soltani Gord faramarzi, Parisa Safaripour Chafi, Abdol-Reza Amani
Abstract:
Temperature, humidity and precipitation in an area, are parameters proved influential in the climate of that area, and one should recognize them so that he can determine the climate of that area. Climate changes are of primary importance in climatology, and in recent years, have been of great concern to researchers and even politicians and organizations, for they can play an important role in social, political and economic activities. Even though the real cause of climate changes or their stability is not yet fully recognized, they are a matter of concern to researchers and their importance for countries has prompted them to investigate climate changes in different levels, especially in regional, national and continental level. This issue has less been investigated in our country. However, in recent years, there have been some researches and conferences on climate changes. This study is also in line with such researches and tries to investigate and analyze the trends of climate changes (temperature and precipitation) in Sefid-roud (the name of a river) basin. Three parameters of mean annual precipitation, temperature, and maximum and minimum temperatures in 36 synoptic and climatology stations in a statistical period of 49 years (1956-2005) in the stations of Sefid-roud basin were analyzed by Mann-Kendall test. The results obtained by data analysis show that climate changes are short term and have a trend. The analysis of mean temperature revealed that changes have a significantly rising trend, besides the precipitation has a significantly falling trend.Keywords: Trend, Climate changes, Sefid-roud, Mann-Kendall
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17542719 Periodic Mixed Convection of a Nanofluid in a Cavity with Top Lid Sinusoidal Motion
Authors: Arash Karimipour, M. Afrand, M. M. Bazofti
Abstract:
The periodic mixed convection of a water-copper nanofluid inside a rectangular cavity with aspect ratio of 3 is investigated numerically. The temperature of the bottom wall of the cavity is assumed greater than the temperature of the top lid which oscillates horizontally with the velocity defined as u = u0 sin (ω t). The effects of Richardson number, Ri, and volume fraction of nanoparticles on the flow and thermal behavior of the nanofluid are investigated. Velocity and temperature profiles, streamlines and isotherms are presented. It is observed that when Ri < 1, heat transfer rate is much greater than when Ri > 1. The higher value of Ri corresponds to a lower value of the amplitude of the oscillation of Num in the steady periodic state. Moreover, increasing the volume fraction of the nanoparticles increases the heat transfer rate.Keywords: Nanofluid, Top lid oscillation, Mixed convection, Volume fraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17292718 Pyrolysis of Rice Husk in a Fixed Bed Reactor
Authors: Natarajan. E, Ganapathy Sundaram. E
Abstract:
Fixed-bed slow pyrolysis experiments of rice husk have been conducted to determine the effect of pyrolysis temperature, heating rate, particle size and reactor length on the pyrolysis product yields. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 0.60-1.18 mm. The optimum process conditions for maximum liquid yield from the rice husk pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 500°C, particle size of 1.18-1.80 mm, with a heating rate of 60°C/min in a 300 mm length reactor. The obtained yield of, liquid, gas and solid were found be in the range of 22.57-31.78 %, 27.75-42.26 % and 34.17-42.52 % (all weight basics) respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and reactor length. The functional groups and chemical compositions present in the liquid obtained at optimum conditions were identified by Fourier Transform-Infrared (FT-IR) spectroscopy and Gas Chromatography/ Mass Spectroscopy (GC/MS) analysis respectively.Keywords: Slow pyrolysis, Rice husk, Recycling, Biomass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39152717 Design, Development and Implementation of aTemperature Sensor using Zigbee Concepts
Authors: T.C.Manjunath, Ph.D., Ashok Kusagur, Shruthi Sanjay, Saritha Sindushree, C. Ardil
Abstract:
This paper deals with the design, development & implementation of a temperature sensor using zigbee. The main aim of the work undertaken in this paper is to sense the temperature and to display the result on the LCD using the zigbee technology. ZigBee operates in the industrial, scientific and medical (ISM) radio bands; 868 MHz in Europe, 915 MHz in the USA and 2.4 GHz in most jurisdictions worldwide. The technology is intended to be simpler and cheaper than other WPANs such as Bluetooth. The most capable ZigBee node type is said to require only about 10 % of the software of a typical Bluetooth or Wireless Internet node, while the simplest nodes are about 2 %. However, actual code sizes are much higher, more like 50 % of the Bluetooth code size. ZigBee chip vendors have announced 128-kilobyte devices. In this work undertaken in the design & development of the temperature sensor, it senses the temperature and after amplification is then fed to the micro controller, this is then connected to the zigbee module, which transmits the data and at the other end the zigbee reads the data and displays on to the LCD. The software developed is highly accurate and works at a very high speed. The method developed shows the effectiveness of the scheme employed.
Keywords: Zigbee, Microcontroller, PIC, Transmitter, Receiver, Synchronous, Blue tooth, Communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23402716 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes
Authors: Anna Romanova, Morteza A. Alani
Abstract:
Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, when examined in minutes scale; (ii) H2S and CO2 have an identical hourly pattern; (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.
Keywords: Concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21212715 Comparison between Solar Simulation and Infrared Technique for Thermal Balance Test
Authors: Tao Tao, Wang Jing, Cao Zhisong, Liu Yi, Qie Dianfu
Abstract:
The precision of heat flux simulation influences the temperature field and test aberration for TB test and also reflects the test level for spacecraft development. This paper describes TB tests for a small satellite using solar simulator, electric heaters, calrod heaters to evaluate the difference of the three methods. Under the same boundary condition, calrod heaters cases were about 6oC higher than solar simulator cases and electric heaters cases for non-external-heat-flux cases (extreme low temperature cases). While calrod heaters cases and electric heaters cases were 5~7oC and 2~3oC lower than solar simulator cases respectively for high temperature cases. The results show that the solar simulator is better than calrod heaters for its better collimation, non-homogeneity and stability.Keywords: solar simulation, infrared simulation, TB test, TMM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27562714 Effect of Operating Conditions on Forward Osmosis for Nutrient Rejection Using Magnesium Chloride as a Draw Solution
Authors: Yatnanta Padma Devia, Tsuyoshi Imai, Takaya Higuchi, Ariyo Kanno, Koichi Yamamoto, Masahiko Sekine
Abstract:
Advanced treatments such as forward osmosis (FO) can be used to separate or reject nutrients from secondary treated effluents. Forward osmosis uses the chemical potential across the membrane, which is the osmotic pressure gradient, to induce water to flow through the membrane from a feed solution (FS) into a draw solution (DS). The performance of FO is affected by the membrane characteristics, composition of the FS and DS, and operating conditions. The aim of this study was to investigate the optimum velocity and temperature for nutrient rejection and water flux performance in FO treatments. MgCl2 was used as the DS in the FO process. The results showed that higher cross flow velocities yielded higher water fluxes. High rejection of nutrients was achieved by using a moderate cross flow velocity at 0.25 m/s. Nutrient rejection was insensitive to temperature variation, whereas water flux was significantly impacted by it. A temperature of 25°C was found to be good for nutrient rejection.Keywords: Cross flow velocity, forward osmosis, magnesium chloride, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26772713 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming
Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe
Abstract:
Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.Keywords: Induction heating, single point incremental forming, FE modeling, advanced high strength steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9372712 Effect of Co3O4 Nanoparticles Addition on (Bi,Pb)-2223 Superconductor
Authors: A. N. Jannah, R. Abd-Shukor, H. Abdullah
Abstract:
The effect of nano Co3O4 addition on the superconducting properties of (Bi, Pb)-2223 system was studied. The samples were prepared by the acetate coprecipitation method. The Co3O4 with different sizes (10-30 nm and 30-50 nm) from x=0.00 to 0.05 was added to Bi1.6Pb0.4Sr2Ca2Cu3Oy(Co3O4)x. Phase analysis by XRD method, microstructural examination by SEM and dc electrical resistivity by four point probe method were done to characterize the samples. The X-ray diffraction patterns of all the samples indicated the majority Bi-2223 phase along with minor Bi-2212 and Bi-2201 phases. The volume fraction was estimated from the intensities of Bi- 2223, Bi-2212 and Bi-2201 phase. The sample with x=0.01 wt% of the added Co3O4 (10-30 nm size) showed the highest volume fraction of Bi-2223 phase (72%) and the highest superconducting transition temperature, Tc (~102 K). The non-added sample showed the highest Tc(~103 K) compared to added samples with nano Co3O4 (30-50 nm size) added samples. Both the onset critical temperature Tc(onset) and zero electrical resistivity temperature Tc(R=0) were in the range of 103-115 ±1K and 91-103 ±1K respectively for samples with added Co3O4 (10-30 nm and 30-50 nm).Keywords: Bi(Pb)-Sr-Ca-Cu-O superconductor, coprecipitation, nano Co3O4, transition temperature TC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20412711 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide
Authors: A. Vilutis, V. Jankauskas
Abstract:
The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against tungsten carbide-cobalt (WC-Co) hard alloy. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy Dispersive Spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.
Keywords: Friction, composite, carbide, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752710 Breakdown of LDPE Film under Heavy Water Absorption
Authors: Eka PW, T. Okazaki, Y. Murakami, N., Hozumi, M. Nagao
Abstract:
The breakdown strength characteristic of Low Density Polyethylene films (LDPE) under DC voltage application and the effect of water absorption have been studied. Mainly, our experiment was investigated under two conditions; dry and heavy water absorption. Under DC ramp voltage, the result found that the breakdown strength under heavy water absorption has a lower value than dry condition. In order to clarify the effect, the temperature rise of film was observed using non contact thermograph until the occurrence of the electrical breakdown and the conduction current of the sample was also measured in correlation with the thermograph measurement. From the observations, it was shown that under the heavy water absorption, the hot spot in the samples appeared at lower voltage. At the same voltage the temperature of the hot spot and conduction current was higher than that under the dry condition. The measurement result has a good correlation between the existence of a critical field for conduction current and thermograph observation. In case of the heavy water absorption, the occurrence of the threshold field was earlier than the dry condition as result lead to higher of conduction current and the temperature rise appears after threshold field was significantly increased in increasing of field. The higher temperature rise was caused by the higher current conduction as the result the insulation leads to breakdown to the lower field application.Keywords: Low density polyethylene, heavy water absorption, conduction current, temperature rise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18802709 Experimental Investigation of a Novel Reaction in Reduction of Sulfates by Natural Gas as a Reducing Agent
Authors: Ali Ghiaseddin , Akram Nemati
Abstract:
In a pilot plant scale of a fluidized bed reactor, a reduction reaction of sodium sulfate by natural gas has been investigated. Natural gas is applied in this study as a reductant. Feed density, feed mass flow rate, natural gas and air flow rate (independent parameters)and temperature of bed and CO concentration in inlet and outlet of reactor (dependent parameters) were monitored and recorded at steady state. The residence time was adjusted close to value of traditional reaction [1]. An artificial neural network (ANN) was established to study dependency of yield and carbon gradient on operating parameters. Resultant 97% accuracy of applied ANN is a good prove that natural gas can be used as a reducing agent. Predicted ANN model for relation between other sources carbon gradient (accuracy 74%) indicates there is not a meaningful relation between other sources carbon variation and reduction process which means carbon in granule does not have significant effect on the reaction yield.Keywords: reduction by natural gas, fluidized bed, sulfate, sulfide, artificial neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15222708 Simulation of Thermal Storage Phase Change Material in Buildings
Authors: Samira Haghshenaskashani, Hadi Pasdarshahri
Abstract:
One of the potential and effective ways of storing thermal energy in buildings is the integration of brick with phase change materials (PCMs). This paper presents a two-dimensional model for simulating and analyzing of PCM in order to minimize energy consumption in the buildings. The numerical approach has been used with the real weather data of a selected city of Iran (Tehran). Two kinds of brick integrated PCM are investigated and compared base on outdoor weather conditions and the amount of energy consumption. The results show a significant reduction in maximum entering heat flux to building about 32.8% depending on PCM quantity. The results are analyzed by various temperature contour plots. The contour plots illustrated the time dependent mechanism of entering heat flux for a brick integrated with PCM. Further analysis is developed to investigate the effect of PCM location on the inlet heat flux. The results demonstrated that to achieve maximum performance of PCM it is better to locate PCM near the outdoor.Keywords: Building, Energy Storage, PCM, Phase Change Material
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21872707 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements
Authors: Henok Hailemariam, Frank Wuttke
Abstract:
Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.
Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11172706 Low Temperature Ethanol Gas Sensor based on SnO2/MWNTs Nanocomposite
Authors: O. Alizadeh Sahraei, A. Khodadadi, Y. Mortazavi, M. Vesali Naseh, S. Mosadegh
Abstract:
A composite made of plasma functionalized multiwall carbon nanotubes (MWNTs) coated with SnO2 was synthesized by sonochemical precipitation method. Thick layer of this nanocomposite material was used as ethanol sensor at low temperatures. The composite sensitivity for ethanol has increased by a factor of 2 at room temperature and by a factor of 13 at 250°C in comparison to that of pure SnO2. SEM image of nanocomposite material showed MWNTs were embedded in SnO2 matrix and also a higher surface area was observed in the presence of functionalized MWNTs. Greatly improved sensitivity of the composite material to ethanol can be attributed to new gas accessing passes through MWNTs and higher specific surface area.Keywords: Carbon nanotube, Functionalized, Gas sensor, Low temperature, Nanocomposite, Tin oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23382705 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model
Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth
Abstract:
This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21582704 Effect of Humidity on in-Process Crystallization of Lactose during Spray Drying
Authors: Amirali Ebrahimi, T. A. G. Langrish
Abstract:
The effect of various humidities on process yields and degrees of crystallinity for spray-dried powders from spray drying of lactose with humid air in a straight-through system have been studied. It has been suggested by Williams–Landel–Ferry kinetics (WLF) that a higher particle temperature and lower glass-transition temperature would increase the crystallization rate of the particles during the spray-drying process. Freshly humidified air produced by a Buchi-B290 spray dryer as a humidifier attached to the main spray dryer decreased the particle glass-transition temperature (Tg), while allowing the particle temperature (Tp) to reach higher values by using an insulated drying chamber. Differential scanning calorimetry (DSC) and moisture sorption analysis were used to measure the degree of crystallinity for the spray-dried lactose powders. The results showed that higher Tp-Tg, as a result of applying humid air, improved the process yield from 21 ± 4 to 26 ± 2% and crystallinity of the particles by decreasing the latent heat of crystallization from 43 ± 1 to 30 ± 11 J/g and the sorption peak height from 7.3 ± 0.7% to 6 ± 0.7%.
Keywords: Lactose, crystallization, spray drying, humid air.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34392703 Effects of Varying Air Temperature in the Polishing Component of Single-Pass Mill on the Quality of Rice
Authors: M. A. U. Baradi, F. B. Bulao, N. D. Ganotisi, M. Jose C. Regalado, F. P. Bongat, S. B. Manglinong, M. L. O. Quigao, N. G. T. Martinez, R. G. Ancheta, M. P. Ortal
Abstract:
The effects of varying air temperature (full, ¾ full, ½ full aircon adjustment, no aircon) in polishing component of Single-Pass Mill on the quality of Philippine inbred rice variety, was investigated. Parameters measured were milling recovery (MR), headrice recovery (HR), and percentage with bran streaks. Cooling method (with aircon) increased MR, HR, and percentage with bran streaks of milled rice. Highest MR and HR (67.62%; 47.33%) were obtained from ¾ full adjustment whereas no aircon were lowest (66.27%; 39.76%). Temperature in polishing component at ¾ full adjustment was 33oC whereas no aircon was 45oC. There was increase of 1.35% in MR and 7.57% in HR. Additional cost of milling per kg due to aircon cooling was P0.04 at 300 tons/yr volume, with 0.15 yr payback period. Net income was estimated at ₱98,100.00. Percentage of kernels with bran streaks increased from 5%–14%, indicating more nutrients of milled rice.
Keywords: Aircon, air temperature, polishing component, quality, Single-Pass Mill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18652702 Simulation Study on Comparison of Thermal Comfort during Heating with All-Air System and Radiant Floor System
Authors: Shiyun Liu
Abstract:
Radiant heating systems work fundamentally differently from air systems by taking advantage of both radiant and convective heat transfer to remove space heating load. There are rare studies on differences of heating systems between all-air system and radiant floor system. This paper uses the method of simulation based on state-space to calculate the indoor temperature and wall temperature of each system and shows how the dynamic heat transfer in rooms conditioned by a radiant system is different from an air system. Then this paper analyses the changes of indoor temperature of these two systems, finding out the differences between all-air heating system and radiant floor heating system to help the designer choose a more suitable heating system.
Keywords: Radiant floor, all-air system, thermal comfort, simulation, heating system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7782701 Spatial Correlation Analysis between Climate Factors and Plant Production in Asia
Authors: Yukiyo Yamamoto, Jun Furuya, Shintaro Kobayashi
Abstract:
Using 1km grid datasets representing monthly mean precipitation, monthly mean temperature, and dry matter production (DMP), we considered the regional plant production ability in Southeast and South Asia, and also employed pixel-by-pixel correlation analysis to assess the intensity of relation between climate factors and plant production. While annual DMP in South Asia was approximately less than 2,000kg, the one in most part of Southeast Asia exceeded 2,500 - 3,000kg. It suggested that plant production in Southeast Asia was superior to South Asia, however, Rain-Use Efficiency (RUE) representing dry matter production per 1mm precipitation showed that inland of Indochina Peninsula and India were higher than islands in Southeast Asia. By the results of correlation analysis between climate factors and DMP, while the area in most parts of Indochina Peninsula indicated negative correlation coefficients between DMP and precipitation or temperature, the area in Malay Peninsula and islands showed negative correlation to precipitation and positive one to temperature, and most part of India dominating South Asia showed positive to precipitation and negative to temperature. In addition, the areas where the correlation coefficients exceeded |0.8| were regarded as “susceptible" to climate factors, and the areas smaller than |0.2| were “insusceptible". By following the discrimination, the map implying expected impacts by climate change was provided.Keywords: Asia, correlation analysis, plant production, precipitation, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14502700 Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material
Authors: Anil Bhandari, Imran Khan Pathan, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit
Abstract:
The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 Hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.
Keywords: Embelin, Gallic acid, Vidangadi Churna, Colon targeted drug delivery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23862699 Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Husk for Ethanol Production: Effect of Sugar Degradation
Authors: Megawati, Wahyudi B. Sediawan, Hary Sulistyo, Muslikhin Hidayat
Abstract:
Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 1/min and 2.29 x 108 L/mole/min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.Keywords: degradation, ethanol, hydrolysis, rice husk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19772698 Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Huskfor Ethanol Production: Effect of Sugar Degradation
Authors: Megawati, Wahyudi B. Sediawan, Hary Sulistyo, Muslikhin Hidayat
Abstract:
Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 min-1 and 2.29 x 108 L/mole-min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.Keywords: degradation, ethanol, hydrolysis, rice husk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20342697 Comparison of Proportional Control and Fuzzy Logic Control to Develop an Ideal Thermoelectric Renal Hypothermia System
Authors: Hakan Işık, Esra Saraçoğlu
Abstract:
In this study, a comparison of two control methods, Proportional Control (PC) and Fuzzy Logic Control (FLC), which have been used to develop an ideal thermoelectric renal hypothermia system in order to use in renal surgery, has been carried out. Since the most important issues in long-lasting parenchymatous renal surgery are to provide an operation medium free of blood and to prevent renal dysfunction in the postoperative period, control of the temperature has become very important in renal surgery. The final product is seriously affected from the changes in temperature, therefore, it is necessary to reach some desired temperature points quickly and avoid large overshoot. PIC16F877 microcontroller has been used as controller for both of these two methods. Each control method can simply ensure extra renal hypothermia in the targeted way. But investigation of advantages and disadvantages of every control method to each other is aimed and carried out by the experimental implementations. Shortly, investigation of the most appropriate method to use for development of system and that can be applied to people safely in the future, has been performed. In this sense, experimental results show that fuzzy logic control gives out more reliable responses and efficient performance.Keywords: renal hypothermia, renal cooling, temperature control, proportional control fuzzy logic control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14612696 A Model for Application of Knowledge Management in Public Organizations in Iran
Authors: Salavati, Adel, Ebadi Shaghayegh
Abstract:
This study examines knowledge management in the public organizations in Iran. The purpose of this article is to provide a conceptual framework for application of knowledge management in public organizations. The study indicates that an increasing tendency for implementation of knowledge management in organizations is emerging. Nonetheless knowledge management in public organizations is toddler and little has been done to bring the subject to use in the public sector. The globalization of change and popularization of some values like participation, citizen-orientation and knowledge-orientation in the new theories of public administration requires that the knowledge management is considered and attend to in the public sector. This study holds that a knowledge management framework for public organizations is different from this in the public sector, because public sector is stakeholder-dependent while the private is shareholder-dependent. Based on the research, we provide a conceptual model. The model proposed involves three factors: Organizational, knowledge citizens and contextual factors. The study results indicate these factors affect on knowledge management in public organizations in Iran.
Keywords: Knowledge management, public organizations in Iran, model of knowledge management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20992695 Determination of Temperature and Velocity Fields in a Corridor at a Central Interim Spent Fuel Storage Facility Using Numerical Simulation
Authors: V. Salajka, J. Kala, P. Hradil
Abstract:
The presented article deals with the description of a numerical model of a corridor at a Central Interim Spent Fuel Storage Facility (hereinafter CISFSF). The model takes into account the effect of air flows on the temperature of stored waste. The computational model was implemented in the ANSYS/CFX programming environment in the form of a CFD task solution, which was compared with an approximate analytical calculation. The article includes a categorization of the individual alternatives for the ventilation of such underground systems. The aim was to evaluate a ventilation system for a CISFSF with regard to its stability and capacity to provide sufficient ventilation for the removal of heat produced by stored casks with spent nuclear fuel.Keywords: Temperature fields, Spent Fuel, Interim storage facility, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13992694 Monotonicity of Dependence Concepts from Independent Random Vector into Dependent Random Vector
Authors: Guangpu Chen
Abstract:
When the failure function is monotone, some monotonic reliability methods are used to gratefully simplify and facilitate the reliability computations. However, these methods often work in a transformed iso-probabilistic space. To this end, a monotonic simulator or transformation is needed in order that the transformed failure function is still monotone. This note proves at first that the output distribution of failure function is invariant under the transformation. And then it presents some conditions under which the transformed function is still monotone in the newly obtained space. These concern the copulas and the dependence concepts. In many engineering applications, the Gaussian copulas are often used to approximate the real word copulas while the available information on the random variables is limited to the set of marginal distributions and the covariances. So this note catches an importance on the conditional monotonicity of the often used transformation from an independent random vector into a dependent random vector with Gaussian copulas.
Keywords: Monotonic, Rosenblatt, Nataf transformation, dependence concepts, completely positive matrices, Gaussiancopulas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12112693 Post Elevated Temperature Effect on the Strength and Microstructure of Thin High Performance Cementitious Composites (THPCC)
Authors: A. Q. Sobia, A. Shyzleen, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi, S. Ahmad
Abstract:
Reinforced Concrete (RC) structures strengthened with fiber reinforced polymer (FRP) lack in thermal resistance under elevated temperatures in the event of fire. This phenomenon led to the lining of strengthened concrete with thin high performance cementitious composites (THPCC) to protect the substrate against elevated temperature. Elevated temperature effects on THPCC, based on different cementitious materials have been studied in the past but high-alumina cement (HAC)-based THPCC have not been well characterized. This research study will focus on the THPCC based on HAC replaced by 60%, 70%, 80% and 85% of ground granulated blast furnace slag (GGBS). Samples were evaluated by the measurement of their mechanical strength (28 & 56 days of curing) after exposed to 400°C, 600°C and 28°C of room temperature for comparison and corroborated by their microstructure study. Results showed that among all mixtures, the mix containing only HAC showed the highest compressive strength after exposed to 600°C as compared to other mixtures. However, the tensile strength of THPCC made of HAC and 60% GGBS content was comparable to the THPCC with HAC only after exposed to 600°C. Field emission scanning electron microscopy (FESEM) images of THPCC accompanying Energy Dispersive X-ray (EDX) microanalysis revealed that the microstructure deteriorated considerably after exposure to elevated temperatures which led to the decrease in mechanical strength.Keywords: Ground granulated blast furnace slag, high aluminacement, microstructure at elevated temperature and residual strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23762692 Effects of Engine Parameters and Fuel Compositions on Ignition Timing and Emission Characteristics of HCCI Engine
Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed
Abstract:
In this research, the effects of the engine parameters like compression ratios and steam injection on igniting timing and emission characteristics have been investigated numerically. The in-cylinder temperature and pressure at four different compression ratios have been compared with numerical results, and they show a good agreement with the published data. Two different fuels have been used in this study: Isooctane (IC8H18), and ethanol (C2H5OH). The increasing of the compression ratio (CR) advances the ignition timing, decreases the burn duration and increases the temperature and the pressure. The injection of water vapor lower than 40% decreased the peak temperature and slowed the combustion rate which leads to a lower NOx emission.
Keywords: Compression ratio, emission, HCCI engine, ignition timing, steam injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871