Search results for: interval-valued fuzzy BG-subalgebra.
311 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment
Authors: Fares Innal, Yves Dutuit, Mourad Chebila
Abstract:
The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.
Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779310 Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids
Authors: Chih-Jer Lin, Chun-Ying Lee, Chiang-Ho Cheng, Geng-Fung Chen
Abstract:
This paper investigates experimental studies on vibration suppression for a cantilever beam using an Electro-Rheological (ER) sandwich shock absorber. ER fluid (ERF) is a class of smart materials that can undergo significant reversible changes immediately in its rheological and mechanical properties under the influence of an applied electric field. Firstly, an ER sandwich beam is fabricated by inserting a starch-based ERF into a hollow composite beam. At the same time, experimental investigations are focused on the frequency response of the ERF sandwich beam. Second, the ERF sandwich beam is attached to a cantilever beam to become as a shock absorber. Finally, a fuzzy semi-active vibration control is designed to suppress the vibration of the cantilever beam via the ERF sandwich shock absorber. To check the consistency of the proposed fuzzy controller, the real-time implementation validated the performance of the controller.
Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, fuzzy control, Real-time control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228309 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review
Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen
Abstract:
The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944308 Using Data Mining for Learning and Clustering FCM
Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mohammad Fathian
Abstract:
Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show relations between essential components. In some FCM, there are more nodes, which related to each other and more nodes means more complex in system behaviors and analysis. In this paper, a novel learning method used to construct FCMs based on historical data and by using data mining and DEMATEL method, a new method defined to reduce nodes number. This method cluster nodes in FCM based on their cause and effect behaviors.Keywords: Clustering, Data Mining, Fuzzy Cognitive Map(FCM), Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016307 Fuzzy Group Decision Making for the Assessment of Health-Care Waste Disposal Alternatives in Istanbul
Authors: Mehtap Dursun, E. Ertugrul Karsak, Melis Almula Karadayi
Abstract:
Disposal of health-care waste (HCW) is considered as an important environmental problem especially in large cities. Multiple criteria decision making (MCDM) techniques are apt to deal with quantitative and qualitative considerations of the health-care waste management (HCWM) problems. This research proposes a fuzzy multi-criteria group decision making approach with a multilevel hierarchical structure including qualitative as well as quantitative performance attributes for evaluating HCW disposal alternatives for Istanbul. Using the entropy weighting method, objective weights as well as subjective weights are taken into account to determine the importance weighting of quantitative performance attributes. The results obtained using the proposed methodology are thoroughly analyzed.Keywords: Entropy weighting method, group decision making, health-care waste management, hierarchical fuzzy multi-criteriadecision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687306 A Cascaded Fuzzy Inference System for Dynamic Online Portals Customization
Authors: Erika Martinez Ramirez, Rene V. Mayorga
Abstract:
In our modern world, more physical transactions are being substituted by electronic transactions (i.e. banking, shopping, and payments), many businesses and companies are performing most of their operations through the internet. Instead of having a physical commerce, internet visitors are now adapting to electronic commerce (e-Commerce). The ability of web users to reach products worldwide can be greatly benefited by creating friendly and personalized online business portals. Internet visitors will return to a particular website when they can find the information they need or want easily. Dealing with this human conceptualization brings the incorporation of Artificial/Computational Intelligence techniques in the creation of customized portals. From these techniques, Fuzzy-Set technologies can make many useful contributions to the development of such a human-centered endeavor as e-Commerce. The main objective of this paper is the implementation of a Paradigm for the Intelligent Design and Operation of Human-Computer interfaces. In particular, the paradigm is quite appropriate for the intelligent design and operation of software modules that display information (such Web Pages, graphic user interfaces GUIs, Multimedia modules) on a computer screen. The human conceptualization of the user personal information is analyzed throughout a Cascaded Fuzzy Inference (decision-making) System to generate the User Ascribe Qualities, which identify the user and that can be used to customize portals with proper Web links.
Keywords: Fuzzy Logic, Internet, Electronic Commerce, Intelligent Portals, Electronic Shopping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788305 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology
Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen
Abstract:
Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.Keywords: Absorption chillers, turbine inlet air cooling, power purchase agreement, multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934304 A New Criterion Pose and Shape of Objects for Collision Risk Estimation
Authors: Do Hyeung Kim, Dae Hee Seo, Byung Doo Kim, Byung Gil Lee
Abstract:
As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.
Keywords: Collision risk, Pose and shape, Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909303 Project Selection Using Fuzzy Group Analytic Network Process
Authors: Hamed Rafiei, Masoud Rabbani
Abstract:
This paper deals with the project selection problem. Project selection problem is one of the problems arose firstly in the field of operations research following some production concepts from primary product mix problem. Afterward, introduction of managerial considerations into the project selection problem have emerged qualitative factors and criteria to be regarded as well as quantitative ones. To overcome both kinds of criteria, an analytic network process is developed in this paper enhanced with fuzzy sets theory to tackle the vagueness of experts- comments to evaluate the alternatives. Additionally, a modified version of Least-Square method through a non-linear programming model is augmented to the developed group decision making structure in order to elicit the final weights from comparison matrices. Finally, a case study is considered by which developed structure in this paper is validated. Moreover, a sensitivity analysis is performed to validate the response of the model with respect to the condition alteration.
Keywords: Analytic network process, Fuzzy sets theory, Nonlinear programming, Project selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769302 Measuring Banks’ Antifragility via Fuzzy Logic
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Analysing the world banking sector, we realize that traditional risk measurement methodologies no longer reflect the actual scenario with uncertainty and leave out events that can change the dynamics of markets. Considering this, regulators and financial institutions began to search more realistic models. The aim is to include external influences and interdependencies between agents, to describe and measure the operationalization of these complex systems and their risks in a more coherent and credible way. Within this context, X-Events are more frequent than assumed and, with uncertainties and constant changes, the concept of antifragility starts to gain great prominence in comparison to others methodologies of risk management. It is very useful to analyse whether a system succumbs (fragile), resists (robust) or gets benefits (antifragile) from disorder and stress. Thus, this work proposes the creation of the Banking Antifragility Index (BAI), which is based on the calculation of a triangular fuzzy number – to "quantify" qualitative criteria linked to antifragility.
Keywords: Complex adaptive systems, X-events, risk management, antifragility, banking antifragility index, triangular fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897301 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel
Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren
Abstract:
Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.
Keywords: Flywheel energy storage, fuzzy, optimization, stress analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963300 Fuzzy Logic Control of a Semi-Active Quarter Car System
Authors: Devdutt, M. L. Aggarwal
Abstract:
The development of vehicles having best ride comfort and safety of travelling passengers is of great interest for automotive manufacturers. The effect of transmitted vibrations from car body to passenger seat is required to be controlled for achieving the same. The application of magneto-rheological (MR) shock absorber in suspension system has been considered to achieve significant benefits in this regard. This paper introduces a secondary suspension controlled semi-active quarter car system using MR shock absorber for effective vibration control. Fuzzy logic control system is used for design of controller for actual damping force generation by MR shock absorber. Performance evaluations are done related to passenger seat acceleration and displacement in time and frequency domains, in order to see the effectiveness of the proposed semi-active suspension system. Simulation results show that the semi-active suspension system provides better results compared to passive suspension system in terms of passenger ride comfort improvement.
Keywords: Fuzzy logic control, MR shock absorber, Quarter car model, Semi-active suspension system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3144299 Evaluation of New Product Development Projects using Artificial Intelligence and Fuzzy Logic
Authors: Orhan Feyzioğlu, Gülçin Büyüközkan
Abstract:
As a vital activity for companies, new product development (NPD) is also a very risky process due to the high uncertainty degree encountered at every development stage and the inevitable dependence on how previous steps are successfully accomplished. Hence, there is an apparent need to evaluate new product initiatives systematically and make accurate decisions under uncertainty. Another major concern is the time pressure to launch a significant number of new products to preserve and increase the competitive power of the company. In this work, we propose an integrated decision-making framework based on neural networks and fuzzy logic to make appropriate decisions and accelerate the evaluation process. We are especially interested in the two initial stages where new product ideas are selected (go/no go decision) and the implementation order of the corresponding projects are determined. We show that this two-staged intelligent approach allows practitioners to roughly and quickly separate good and bad product ideas by making use of previous experiences, and then, analyze a more shortened list rigorously.Keywords: Decision Making, Neural Networks, Fuzzy Theory and Systems, Choquet Integral, New Product Development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833298 A New Approach to Image Segmentation via Fuzzification of Rènyi Entropy of Generalized Distributions
Authors: Samy Sadek, Ayoub Al-Hamadi, Axel Panning, Bernd Michaelis, Usama Sayed
Abstract:
In this paper, we propose a novel approach for image segmentation via fuzzification of Rènyi Entropy of Generalized Distributions (REGD). The fuzzy REGD is used to precisely measure the structural information of image and to locate the optimal threshold desired by segmentation. The proposed approach draws upon the postulation that the optimal threshold concurs with maximum information content of the distribution. The contributions in the paper are as follow: Initially, the fuzzy REGD as a measure of the spatial structure of image is introduced. Then, we propose an efficient entropic segmentation approach using fuzzy REGD. However the proposed approach belongs to entropic segmentation approaches (i.e. these approaches are commonly applied to grayscale images), it is adapted to be viable for segmenting color images. Lastly, diverse experiments on real images that show the superior performance of the proposed method are carried out.Keywords: Entropy of generalized distributions, entropy fuzzification, entropic image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232297 Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States
Authors: Ashish Saini, A.K. Saxena
Abstract:
The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.Keywords: Contingent operation state, Fuzzy rule base, Genetic Algorithms, Optimal Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615296 Fuzzy Set Approach to Study Appositives and Its Impact Due to Positional Alterations
Authors: E. Mike Dison, T. Pathinathan
Abstract:
Computing with Words (CWW) and Possibilistic Relational Universal Fuzzy (PRUF) are the two concepts which widely represent and measure the vaguely defined natural phenomenon. In this paper, we study the positional alteration of the phrases by which the impact of a natural language proposition gets affected and/or modified. We observe the gradations due to sensitivity/feeling of a statement towards the positional alterations. We derive the classification and modification of the meaning of words due to the positional alteration. We present the results with reference to set theoretic interpretations.
Keywords: Appositive, computing with words, PRUF, semantic sentiment analysis, set theoretic interpretations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840295 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627294 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System
Authors: Jason Chien-Hsun Tseng
Abstract:
This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059293 New Fuzzy Preference Relations and its Application in Group Decision Making
Authors: Nur Syibrah Muhamad Naim, Mohd Lazim Abdullah, Che Mohd Imran Che Taib, Abu OsmanMd. Tap
Abstract:
Decision making preferences to certain criteria usually focus on positive degrees without considering the negative degrees. However, in real life situation, evaluation becomes more comprehensive if negative degrees are considered concurrently. Preference is expected to be more effective when considering both positive and negative degrees of preference to evaluate the best selection. Therefore, the aim of this paper is to propose the conflicting bifuzzy preference relations in group decision making by utilization of a novel score function. The conflicting bifuzzy preference relation is obtained by introducing some modifications on intuitionistic fuzzy preference relations. Releasing the intuitionistic condition by taking into account positive and negative degrees simultaneously and utilizing the novel score function are the main modifications to establish the proposed preference model. The proposed model is tested with a numerical example and proved to be simple and practical. The four-step decision model shows the efficiency of obtaining preference in group decision making.Keywords: Fuzzy preference relations, score function, conflicting bifuzzy, decision making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432292 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production
Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy
Abstract:
Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.
Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415291 Fuzzy Processing of Uncertain Data
Authors: Petr Morávek, Miloš Šeda
Abstract:
In practice, we often come across situations where it is necessary to make decisions based on incomplete or uncertain data. In control systems it may be due to the unknown exact mathematical model, or its excessive complexity (e.g. nonlinearity) when it is necessary to simplify it, respectively, to solve it using a rule base. In the case of databases, searching data we compare a similarity measure with of the requirements of the selection with stored data, where both the select query and the data itself may contain vague terms, for example in the form of linguistic qualifiers. In this paper, we focus on the processing of uncertain data in databases and demonstrate it on the example multi-criteria decision making in the selection of variants, specified by higher number of technical parameters.Keywords: fuzzy logic, linguistic variable, multicriteria decision
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418290 Two Stage Fuzzy Methodology to Evaluate the Credit Risks of Investment Projects
Authors: O. Badagadze, G. Sirbiladze, I. Khutsishvili
Abstract:
The work proposes a decision support methodology for the credit risk minimization in selection of investment projects. The methodology provides two stages of projects’ evaluation. Preliminary selection of projects with minor credit risks is made using the Expertons Method. The second stage makes ranking of chosen projects using the Possibilistic Discrimination Analysis Method. The latter is a new modification of a well-known Method of Fuzzy Discrimination Analysis.
Keywords: Expert valuations, expertons, investment project risks, positive and negative discriminations, possibility distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738289 Hybrid Control Mode Based On Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot
Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin
Abstract:
This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.
Keywords: Autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208288 Iraqi Short Term Electrical Load Forecasting Based On Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.
Keywords: Short term load forecasting, prediction interval, type 2 fuzzy logic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888287 Level of Service Based Methodology for Municipal Infrastructure Management
Authors: Z. Khan, O. Moselhi, T. Zayed
Abstract:
Development of levels of service in municipal context is a flexible vehicle to assist in performing quality-cost trade-off analysis for municipal services. This trade-off depends on the willingness of a community to pay as well as on the condition of the assets. Community perspective of the performance of an asset from service point of view may be quite different from the municipality perspective of the performance of the same asset from condition point of view. This paper presents a three phased level of service based methodology for water mains that consists of :1)development of an Analytical Hierarchy model of level of service 2) development of Fuzzy Weighted Sum model of water main condition index and 3) deriving a Fuzzy logic based function that maps level of service to asset condition index. This mapping will assist asset managers in quantifying condition improvement requirement to meet service goals and to make more informed decisions on interventions and relayed priorities.Keywords: Asset Management, Level of Service, Condition Index, Analytical Hierarchy, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950286 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode
Authors: N. Ouldcherchali, M. S. Boucherit, L. Barazane, A. Morsli
Abstract:
In this study, we proposed two techniques to track the maximum power point (MPPT) of a photovoltaic system. The first is an intelligent control technique, and the second is robust used for variable structure system. In fact the characteristics I-V and P–V of the photovoltaic generator depends on the solar irradiance and temperature. These climate changes cause the fluctuation of maximum power point; a maximum power point tracking technique (MPPT) is required to maximize the output power. For this we have adopted a control by fuzzy logic (FLC) famous for its stability and robustness. And a Siding Mode Control (SMC) widely used for variable structure system. The system comprises a photovoltaic panel (PV), a DC-DC converter, which is considered as an adaptation stage between the PV and the load. The modelling and simulation of the system is developed using MATLAB/Simulink. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or it is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.Keywords: Fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105285 Power Quality Improvement Using PI and Fuzzy Logic Controllers Based Shunt Active Filter
Authors: Dipen A. Mistry, Bhupelly Dheeraj, Ravit Gautam, Manmohan Singh Meena, Suresh Mikkili
Abstract:
In recent years the large scale use of the power electronic equipment has led to an increase of harmonics in the power system. The harmonics results into a poor power quality and have great adverse economical impact on the utilities and customers. Current harmonics are one of the most common power quality problems and are usually resolved by using shunt active filter (SHAF). The main objective of this work is to develop PI and Fuzzy logic controllers (FLC) to analyze the performance of Shunt Active Filter for mitigating current harmonics under balanced and unbalanced sinusoidal source voltage conditions for normal load and increased load. When the supply voltages are ideal (balanced), both PI and FLC are converging to the same compensation characteristics. However, the supply voltages are non-ideal (unbalanced), FLC offers outstanding results. Simulation results validate the superiority of FLC with triangular membership function over the PI controller.
Keywords: DC link voltage, Fuzzy logic controller, Harmonics, PI controller, Shunt Active Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5162284 Fuzzy Risk-Based Life Cycle Assessment for Estimating Environmental Aspects in EMS
Authors: Kevin Fong-Rey Liu, Ken Yeh, Cheng-Wu Chen, Han-Hsi Liang
Abstract:
Environmental aspects plays a central role in environmental management system (EMS) because it is the basis for the identification of an organization-s environmental targets. The existing methods for the assessment of environmental aspects are grouped into three categories: risk assessment-based (RA-based), LCA-based and criterion-based methods. To combine the benefits of these three categories of research, this study proposes an integrated framework, combining RA-, LCA- and criterion-based methods. The integrated framework incorporates LCA techniques for the identification of the causal linkage for aspect, pathway, receptor and impact, uses fuzzy logic to assess aspects, considers fuzzy conditions, in likelihood assessment, and employs a new multi-criteria decision analysis method - multi-criteria and multi-connection comprehensive assessment (MMCA) - to estimate significant aspects in EMS. The proposed model is verified, using a real case study and the results show that this method successfully prioritizes the environmental aspects.Keywords: Environmental management system, environmental aspect, risk assessment, life cycle assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219283 Anomaly Detection using Neuro Fuzzy system
Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani
Abstract:
As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectivelyKeywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184282 Performance Evaluation of Intelligent Controllers for AGC in Thermal Systems
Authors: Muhammad Muhsin, Abhishek Mishra, Shreyansh Vishwakarma, K. Dasaratha Babu, Anudevi Samuel
Abstract:
In an interconnected power system, any sudden small load perturbation in any of the interconnected areas causes the deviation of the area frequencies, the tie line power and voltage deviation at the generator terminals. This paper deals with the study of performance of intelligent Fuzzy Logic controllers coupled with Conventional Controllers (PI and PID) for Load Frequency Control. For analysis, an isolated single area and interconnected two area thermal power systems with and without generation rate constraints (GRC) have been considered. The studies have been performed with conventional PI and PID controllers and their performance has been compared with intelligent fuzzy controllers. It can be demonstrated that these controllers can successfully bring back the excursions in area frequencies and tie line powers within acceptable limits in smaller time periods and with lesser transients as compared to the performance of conventional controllers under same load disturbance conditions. The simulations in MATLAB have been used for comparative studies.
Keywords: Area Control Error, Fuzzy Logic, Generation rate constraint, Load Frequency, Tie line Power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460