Search results for: assembly machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1428

Search results for: assembly machine

798 Pre-Eliminary Design Adjustable Workstation for Piston Assembly Line Considering Anthropometric for Indonesian People

Authors: T. Yuri M. Zagloel, Inaki M. Hakim, A. M. Syarafi

Abstract:

Manufacturing process has been considered as one of the most important activity in business process. It correlates with productivity and quality of the product so industries could fulfill customer’s demand. With the increasing demand from customer, industries must improve their manufacturing ability such as shorten lead-time and reduce wastes on their process. Lean manufacturing has been considered as one of the tools to waste elimination in manufacturing or service industry. Workforce development is one practice in lean manufacturing that can reduce waste generated from operator such as waste of unnecessary motion. Anthropometric approach is proposed to determine the recommended measurement in operator’s work area. The method will get some dimensions from Indonesia people that related to piston workstation. The result from this research can be obtained new design for the work area considering ergonomic aspect.

Keywords: Adjustable, anthropometric, ergonomic, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
797 Wearable Sensing Application- Carbon Dioxide Monitoring for Emergency Personnel Using Wearable Sensors

Authors: Tanja Radu, Cormac Fay, King Tong Lau, Rhys Waite, Dermot Diamond

Abstract:

The development of wearable sensing technologies is a great challenge which is being addressed by the Proetex FP6 project (www.proetex.org). Its main aim is the development of wearable sensors to improve the safety and efficiency of emergency personnel. This will be achieved by continuous, real-time monitoring of vital signs, posture, activity, and external hazards surrounding emergency workers. We report here the development of carbon dioxide (CO2) sensing boot by incorporating commercially available CO2 sensor with a wireless platform into the boot assembly. Carefully selected commercially available sensors have been tested. Some of the key characteristics of the selected sensors are high selectivity and sensitivity, robustness and the power demand. This paper discusses some of the results of CO2 sensor tests and sensor integration with wireless data transmission

Keywords: Proetex, gas sensing, wireless, wearable sensors, carbon dioxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
796 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis

Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed

Abstract:

This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.

Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 681
795 Research on User Experience and Brand Attitudes of Chatbots

Authors: Shu-Yin Yu

Abstract:

With the advancement of artificial intelligence technology, most companies are aware of the profound potential of artificial intelligence in commercial marketing. Man-machine dialogue has become the latest trend in marketing customer service. However, chatbots are often considered to be lack of intelligent or unfriendly conversion, which instead reduces the communication effect of chatbots. To ensure that chatbots represent the brand image and provide a good user experience, companies and users attach great importance. In this study, customer service chatbot was used as the research sample. The research variables are based on the theory of artificial intelligence emotions, integrating the technology acceptance model and innovation diffusion theory, and the three aspects of pleasure, arousal, and dominance of the human-machine PAD (Pleasure, Arousal and Dominance) dimension. The results show that most of the participants have a higher acceptance of innovative technologies and are high pleasure and arousal in the user experience. Participants still have traditional gender (female) service stereotypes about customer service chatbots. Users who have high trust in using chatbots can easily enhance brand acceptance and easily accept brand messages, extend the trust of chatbots to trust in the brand, and develop a positive attitude towards the brand.

Keywords: Brand attitude, chatbot, emotional interaction, user experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824
794 Overview of CARDIOSENSOR Project on the Development of a Nanosensor for Assessing the Risk of Cardiovascular Disease

Authors: A.C. Duarte, C.I.L. Justino, K. Duarte, A.C. Freitas, R. Pereira, P. Chaves, P. Bettencourt, S. Cardoso, T.A.P. Rocha-Santos

Abstract:

This paper aims at overviewing the topics of a research project (CARDIOSENSOR) on the field of health sciences (biomaterials and biomedical engineering). The project has focused on the development of a nanosensor for the assessment of the risk of cardiovascular diseases by the monitoring of C-reactive protein (CRP), which has been currently considered as the best validated inflammatory biomarker associated to cardiovascular diseases. The project involves tasks such as: 1) the development of sensor devices based on field effect transistors (FET): assembly, optimization and validation; 2) application of sensors to the detection of CRP in standard solutions and comparison with enzyme-linked immunosorbent assay (ELISA); and 3) application of sensors to real samples such as blood and saliva and evaluation of their ability to predict the risk of cardiovascular disease.

Keywords: Carbon nanotubes field effect transistors, cardiovascular diseases, C-reactive protein, sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
793 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines

Authors: Mona Soliman Habib

Abstract:

This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.

Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
792 The Autoregresive Analysis for Wind Turbine Signal Postprocessing

Authors: Daniel Pereiro, Felix Martinez, Iker Urresti, Ana Gomez Gonzalez

Abstract:

Today modern simulations solutions in the wind turbine industry have achieved a high degree of complexity and detail in result. Limitations exist when it is time to validate model results against measurements. Regarding Model validation it is of special interest to identify mode frequencies and to differentiate them from the different excitations. A wind turbine is a complex device and measurements regarding any part of the assembly show a lot of noise. Input excitations are difficult or even impossible to measure due to the stochastic nature of the environment. Traditional techniques for frequency analysis or features extraction are widely used to analyze wind turbine sensor signals, but have several limitations specially attending to non stationary signals (Events). A new technique based on autoregresive analysis techniques is introduced here for a specific application, a comparison and examples related to different events in the wind turbine operations are presented.

Keywords: Wind turbine, signal processing, mode extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
791 FSM-based Recognition of Dynamic Hand Gestures via Gesture Summarization Using Key Video Object Planes

Authors: M. K. Bhuyan

Abstract:

The use of human hand as a natural interface for humancomputer interaction (HCI) serves as the motivation for research in hand gesture recognition. Vision-based hand gesture recognition involves visual analysis of hand shape, position and/or movement. In this paper, we use the concept of object-based video abstraction for segmenting the frames into video object planes (VOPs), as used in MPEG-4, with each VOP corresponding to one semantically meaningful hand position. Next, the key VOPs are selected on the basis of the amount of change in hand shape – for a given key frame in the sequence the next key frame is the one in which the hand changes its shape significantly. Thus, an entire video clip is transformed into a small number of representative frames that are sufficient to represent a gesture sequence. Subsequently, we model a particular gesture as a sequence of key frames each bearing information about its duration. These constitute a finite state machine. For recognition, the states of the incoming gesture sequence are matched with the states of all different FSMs contained in the database of gesture vocabulary. The core idea of our proposed representation is that redundant frames of the gesture video sequence bear only the temporal information of a gesture and hence discarded for computational efficiency. Experimental results obtained demonstrate the effectiveness of our proposed scheme for key frame extraction, subsequent gesture summarization and finally gesture recognition.

Keywords: Hand gesture, MPEG-4, Hausdorff distance, finite state machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
790 rRNA Maturation Genes (KRR1 and PWP2) in Saccharomyces cerevisiae Inhibited by Silver Nanoparticles

Authors: Anjali Haloi, Debabrata Das

Abstract:

Silver nanoparticles inhibit a wide variety of microorganisms. The mechanism of inhibition is not entirely known although it is recognized to be concentration dependent and associated with the disruption of membrane permeability. Data on differential gene expression as a response to nanoparticles could provide insights into the mechanism of this inhibitory effect. Silver nanoparticles were synthesized in yeast growth media using a modification of the Creighton method and characterized with UV-Vis spectrophotometry, transmission electron microscopy (TEM), and X-ray diffraction (XRD). In yeasts grown in the presence of silver nanoparticles, we observed that at concentrations below the minimum inhibitory concentration (MIC) of 48.51 µg/ml, the total RNA content was steady while the cellular protein content declined rapidly. The analysis of the expression levels of KRR1 and PWP2, two important genes involved in rRNA maturation in yeasts, showed up to 258 and 42-fold decreases, respectively, compared to that of control samples. Whether silver nanoparticles have an adverse effect on ribosome assembly and function could be an area of further investigation.

Keywords: Ag NP, yeast, qRT-PCR, KRR1, PWP2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 390
789 A Framework for Product Development Process including HW and SW Components

Authors: Namchul Do, Gyeongseok Chae

Abstract:

This paper proposes a framework for product development including hardware and software components. It provides separation of hardware dependent software, modifications of current product development process, and integration of software modules with existing product configuration models and assembly product structures. In order to decide the dependent software, the framework considers product configuration modules and engineering changes of associated software and hardware components. In order to support efficient integration of the two different hardware and software development, a modified product development process is proposed. The process integrates the dependent software development into product development through the interchanges of specific product information. By using existing product data models in Product Data Management (PDM), the framework represents software as modules for product configurations and software parts for product structure. The framework is applied to development of a robot system in order to show its effectiveness.

Keywords: HW and SW Development Integration, ProductDevelopment with Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
788 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans

Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee

Abstract:

This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i.e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.

Keywords: Flexible job shop scheduling, Decision tree, Priority rules, Case study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3321
787 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification

Authors: C. Gunavathi, K. Premalatha

Abstract:

Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.

Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4545
786 CFD Simulations of Flow in Capillary Flow Liquid Acquisition Device Channel

Authors: John B. McQuillen, David F. Chao, Nancy R. Hall, Brian J. Motil, Nengli Zhang

Abstract:

Future space vehicles will require the use of non-toxic, cryogenic propellants, because of the performance advantages over the toxic hypergolic propellants and also because of the environmental and handling concerns. A prototypical capillary flow liquid acquisition device (LAD) for cryogenic propellants was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations with different submersion depths of the LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel, including horizontally and vertically submersions of the LAD channel assembly at normal gravity environment was conducted. Gravity effects on the flow field in LAD channel are inspected and analyzed through comparing the simulations.

Keywords: Liquid acquisition device, cryogenic propellants, CFD simulation, vertically submerged screen channel, gravity effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
785 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.

Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3202
784 Computer - based Systems for High Speed Vessels Navigators – Engineers Training

Authors: D. E. Gourgoulis, C. G. Yakinthos, M. G. Vassiliadou

Abstract:

With high speed vessels getting ever more sophisti-cated, travelling at higher and higher speeds and operating in With high speed vessels getting ever more sophisticated, travelling at higher and higher speeds and operating in areas of high maritime traffic density, training becomes of the highest priority to ensure that safety levels are maintained, and risks are adequately mitigated. Training onboard the actual craft on the actual route still remains the most effective way for crews to gain experience. However, operational experience and incidents during the last 10 years demonstrate the need for supplementary training whether in the area of simulation or man to man, man/ machine interaction. Training and familiarisation of the crew is the most important aspect in preventing incidents. The use of simulator, computer and web based training systems in conjunction with onboard training focusing on critical situations will improve the man machine interaction and thereby reduce the risk of accidents. Today, both ship simulator and bridge teamwork courses are now becoming the norm in order to improve further emergency response and crisis management skills. One of the main causes of accidents is the human factor. An efficient way to reduce human errors is to provide high-quality training to the personnel and to select the navigators carefully.areas of high maritime traffic density, training becomes of the highest priority to ensure that safety levels are maintained, and risks are adequately mitigated. Training onboard the actual craft on the actual route still remains the most effective way for crews to gain experience. How-ever, operational experience and incidents during the last 10 years demonstrate the need for supplementary training whether in the area of simulation or man to man, man/ machine interaction. Training and familiarisation of the crew is the most important aspect in preventing incidents. The use of simulator, computer and web based training systems in conjunction with onboard training focusing on critical situations will improve the man machine interaction and thereby reduce the risk of accidents. Today, both ship simulator and bridge teamwork courses are now becoming the norm in order to improve further emergency response and crisis management skills. One of the main causes of accidents is the human factor. An efficient way to reduce human errors is to provide high-quality training to the person-nel and to select the navigators carefully. KeywordsCBT - WBT systems, Human factors.

Keywords: CBT - WBT systems, Human factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
783 A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates

Authors: Ali Sarosh, Dong Yun-Feng, Muhammad Umer

Abstract:

Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.

Keywords: TIPSO-SVM expert system, TIPSO algorithm, two-step SVM method, aerothermodynamics, mass-modeling, TSTO vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
782 Optimization of Wire EDM Parameters for Fabrication of Micro Channels

Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg

Abstract:

Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the micro channels and to calculate the surface finish and material removal rate of micro channels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.

Keywords: Micro Channels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), Surface Finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
781 Program Camouflage: A Systematic Instruction Hiding Method for Protecting Secrets

Authors: Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, Ken-ichi Matsumoto

Abstract:

This paper proposes an easy-to-use instruction hiding method to protect software from malicious reverse engineering attacks. Given a source program (original) to be protected, the proposed method (1) takes its modified version (fake) as an input, (2) differences in assembly code instructions between original and fake are analyzed, and, (3) self-modification routines are introduced so that fake instructions become correct (i.e., original instructions) before they are executed and that they go back to fake ones after they are executed. The proposed method can add a certain amount of security to a program since the fake instructions in the resultant program confuse attackers and it requires significant effort to discover and remove all the fake instructions and self-modification routines. Also, this method is easy to use (with little effort) because all a user (who uses the proposed method) has to do is to prepare a fake source code by modifying the original source code.

Keywords: Copyright protection, program encryption, program obfuscation, self-modification, software protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
780 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry

Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri

Abstract:

This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.

Keywords: Serial manufacturing process, production planning, wire and cable industry, goal programming approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935
779 Development of Vibration Sensor with Wide Frequency Range Based on Condenser Microphone -Estimation System for Flow Rate in Water Pipes-

Authors: Hironori Kakuta, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Water leakage is a serious problem in the maintenance of a waterworks facility. Monitoring the water flow rate is one way to locate leakage. However, conventional flowmeters such as the wet-type flowmeter and the clamp-on type ultrasonic flowmeter require additional construction for their installation and are therefore quite expensive. This paper proposes a novel estimation system for the flow rate in a water pipeline, which employs a vibration sensor. This assembly can be attached to any water pipeline without the need for additional high-cost construction. The vibration sensor is designed based on a condenser microphone. This sensor detects vibration caused by water flowing through a pipeline. It is possible to estimate the water flow rate by measuring the amplitude of the output signal from the vibration sensor. We confirmed the validity of the proposed sensing system experimentally.

Keywords: Condenser microphone, Flow rate estimation, Piping vibration, Water pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
778 Artificial Intelligence: A Comprehensive and Systematic Literature Review of Applications and Comparative Technologies

Authors: Z. M. Najmi

Abstract:

Over the years, the question around Artificial Intelligence has always been one with many answers. Whether by means of use in business and industry or complicated algorithmic programming, management of these technologies has always been the core focus. More recently, technologies have been questioned in industry and society alike as to whether they have improved human-centred design, assisted choices and objectives, and had a hand in systematic processes across the board. With these questions the answer may lie within AI technologies, and the steps needed in removing common human error. Elements such as Machine Learning, Deep Learning, Recommender Systems and Natural Language Processing will all be features to consider moving forward. Our previous intervention with AI applications has resulted in increased productivity, however, raised concerns for the continuation of traditional human-centred occupations. Emerging technologies such as Augmented Reality and Virtual Reality have all played a part in this during AI’s prominent rise. As mentioned, AI has been constantly under the microscope; the benefits and drawbacks may seem endless is wide, but AI is something we must take notice of and adapt into our everyday lives. The aim of this paper is to give an overview of the technologies surrounding A.I. and its’ related technologies. A comprehensive review has been written as a timeline of the developing events and key points in the history of Artificial Intelligence. This research is gathered entirely from secondary research, academic statements of knowledge and gathered to produce an understanding of the timeline of AI.

Keywords: Artificial Intelligence, Deep Learning, Augmented Reality, Reinforcement Learning, Machine Learning, Supervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
777 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
776 Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy

Authors: Yusmeeraz Yusof, Yoshiyuki Yanagimoto, Shigeyasu Uno, Kazuo Nakazato

Abstract:

We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.

Keywords: Biosensor, electrical double-layer, impedance spectroscopy, label free DNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094
775 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)

Authors: Wafa' S.Al-Sharafat, Reyadh Naoum

Abstract:

Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.

Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
774 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
773 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines

Authors: Arun Goel

Abstract:

The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free overfall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, Support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, Support vector machine (Polynomial and rbf) models and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free overfall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.

Keywords: Air entrainment rate, dissolved oxygen, regression, SVM, weir.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
772 Finite Element Analysis of the Blanking and Stamping Processes of Nuclear Fuel Spacer Grids

Authors: R. O. Santos, L. P. Moreira, M. C. Cardoso

Abstract:

Spacer grid assembly supporting the nuclear fuel rods is an important concern in the design of structural components of a Pressurized Water Reactor (PWR). The spacer grid is composed by springs and dimples which are formed from a strip sheet by means of blanking and stamping processes. In this paper, the blanking process and tooling parameters are evaluated by means of a 2D plane-strain finite element model in order to evaluate the punch load and quality of the sheared edges of Inconel 718 strips used for nuclear spacer grids. A 3D finite element model is also proposed to predict the tooling loads resulting from the stamping process of a preformed Inconel 718 strip and to analyse the residual stress effects upon the spring and dimple design geometries of a nuclear spacer grid.

Keywords: Blanking process, damage model, finite element modelling, Inconel 718, spacer grids, stamping process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
771 Object Motion Tracking Based On Color Detection for Android Devices

Authors: Zacharenia I. Garofalaki, John T. Amorginos, John N. Ellinas

Abstract:

This paper presents the development of a robot car that can track the motion of an object by detecting its color through an Android device. The employed computer vision algorithm uses the OpenCV library, which is embedded into an Android application of a smartphone, for manipulating the captured image of the object. The captured image of the object is subjected to color conversion and is transformed to a binary image for further processing after color filtering. The desired object is clearly determined after removing pixel noise by applying image morphology operations and contour definition. Finally, the area and the center of the object are determined so that object’s motion to be tracked. The smartphone application has been placed on a robot car and transmits by Bluetooth to an Arduino assembly the motion directives so that to follow objects of a specified color. The experimental evaluation of the proposed algorithm shows reliable color detection and smooth tracking characteristics.

Keywords: Android, Arduino Uno, Image processing, Object motion detection, OpenCV library.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4567
770 Manufacturing Dispersions Based Simulation and Synthesis of Design Tolerances

Authors: Nassima Cheikh, Abdelmadjid Cheikh, Said Hamou

Abstract:

The objective of this work which is based on the approach of simultaneous engineering is to contribute to the development of a CIM tool for the synthesis of functional design dimensions expressed by average values and tolerance intervals. In this paper, the dispersions method known as the Δl method which proved reliable in the simulation of manufacturing dimensions is used to develop a methodology for the automation of the simulation. This methodology is constructed around three procedures. The first procedure executes the verification of the functional requirements by automatically extracting the functional dimension chains in the mechanical sub-assembly. Then a second procedure performs an optimization of the dispersions on the basis of unknown variables. The third procedure uses the optimized values of the dispersions to compute the optimized average values and tolerances of the functional dimensions in the chains. A statistical and cost based approach is integrated in the methodology in order to take account of the capabilities of the manufacturing processes and to distribute optimal values among the individual components of the chains.

Keywords: functional tolerances, manufacturing dispersions, simulation, CIM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
769 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD, as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches, such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: Autism spectrum disorder, clustering, optimization, unsupervised machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446