Search results for: adaptive margin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 893

Search results for: adaptive margin

263 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation

Authors: Xin Luo, Jin Huang, Chuan-Long Wang

Abstract:

The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.

Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
262 Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network

Authors: Cauvery N. K., K. V. Viswanatha

Abstract:

Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.

Keywords: Ad hoc networks, On-demand routing, Swarmintelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
261 Using a Trust-Based Environment Key for Mobile Agent Code Protection

Authors: Salima Hacini, Zahia Guessoum, Zizette Boufaïda

Abstract:

Human activities are increasingly based on the use of remote resources and services, and on the interaction between remotely located parties that may know little about each other. Mobile agents must be prepared to execute on different hosts with various environmental security conditions. The aim of this paper is to propose a trust based mechanism to improve the security of mobile agents and allow their execution in various environments. Thus, an adaptive trust mechanism is proposed. It is based on the dynamic interaction between the agent and the environment. Information collected during the interaction enables generation of an environment key. This key informs on the host-s trust degree and permits the mobile agent to adapt its execution. Trust estimation is based on concrete parameters values. Thus, in case of distrust, the source of problem can be located and a mobile agent appropriate behavior can be selected.

Keywords: Internet security, malicious host, mobile agent security, trust management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
260 Paranoid Thoughts and Thought Control Strategies in a Nonclinical Population

Authors: Takashi Yamauchi, Anju Sudo, Yoshihiko Tanno

Abstract:

Recently, it has been suggested that thought control strategies aimed at controlling unwanted thoughts may be used to cope with paranoid thoughts in both clinical and nonclinical samples. The current study aims to examine the type of thought control strategies that were associated with the frequency of paranoid thoughts in nonclinical samples. A total of 159 Japanese undergraduate students completed the two scales–the Paranoia Checklist and the Thought Control Questionnaire. A hierarchical multiple regression analysis demonstrated that worry-based control strategies were associated with paranoid thoughts, whereas distraction- and social-based control strategies were inversely associated with paranoid thoughts. Our findings suggest that in a nonclinical population, worry-based strategies may be especially maladaptive, whereas distraction- and social-based strategies may be adaptive to paranoid thoughts.

Keywords: Nonclinical population, paranoid thoughts, thoughtcontrol strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
259 A Model for Bidding Markup Decisions Making based-on Agent Learning

Authors: W. Hou, X. Shan, X. Ye

Abstract:

Bidding is a very important business function to find latent contractors of construction projects. Moreover, bid markup is one of the most important decisions for a bidder to gain a reasonable profit. Since the bidding system is a complex adaptive system, bidding agent need a learning process to get more valuable knowledge for a bid, especially from past public bidding information. In this paper, we proposed an iterative agent leaning model for bidders to make markup decisions. A classifier for public bidding information named PIBS is developed to make full use of history data for classifying new bidding information. The simulation and experimental study is performed to show the validity of the proposed classifier. Some factors that affect the validity of PIBS are also analyzed at the end of this work.

Keywords: bidding markup, decision making, agent learning, information similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
258 Perceived Constraints on Sport Participation among Young Koreans in Australia

Authors: Jae Won Kang

Abstract:

The purpose of this study was to examine a broader range of sport constraints perceived by young Koreans in Australia who may need to adjust to changing behavioral expectations due to the socio-cultural transitions. Regardless of gender, in terms of quantitative findings, the most important participation constraints within the seven categories were resources, access, interpersonal, affective, religious, socio-cultural, and physical in that order. The most important constraining items were a lack of time, access, information, adaptive skills, and parental and family support in that order. Qualitative research found young Korean’s participation constraints among three categories (time, parental control and interpersonal constraints). It is possible that different ethnic groups would be constrained by different factors; however, this is outside the scope of this study.

Keywords: Constraints, cultural adjustment, Sport, Young Koreans in Australia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628
257 Key Frames Extraction for Sign Language Video Analysis and Recognition

Authors: Jaroslav Polec, Petra Heribanová, Tomáš Hirner

Abstract:

In this paper we proposed a method for finding video frames representing one sign in the finger alphabet. The method is based on determining hands location, segmentation and the use of standard video quality evaluation metrics. Metric calculation is performed only in regions of interest. Sliding mechanism for finding local extrema and adaptive threshold based on local averaging is used for key frames selection. The success rate is evaluated by recall, precision and F1 measure. The method effectiveness is compared with metrics applied to all frames. Proposed method is fast, effective and relatively easy to realize by simple input video preprocessing and subsequent use of tools designed for video quality measuring.

Keywords: Key frame, video, quality, metric, MSE, MSAD, SSIM, VQM, sign language, finger alphabet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
256 Development of a Robust Supply Chain for Dynamic Operating Environment

Authors: Shilan Li, Ivan Arokiam, Peter Jarvis, Wendy Garner, Gazelleh Moradi, Stuart Wakefield

Abstract:

Development of a Robust Supply Chain for Dynamic Operating Environment as we move further into the twenty first century, organisations are under increasing pressure to deliver a high product variation at a reasonable cost without compromise in quality. In a number of cases this will take the form of a customised or high variety low volume manufacturing system that requires prudent management of resources, among a number of functions, to achieve competitive advantage. Purchasing and Supply Chain management is one of such function and due to the substantial interaction with external elements needs to be strategically managed. This requires a number of primary and supporting tools that will enable the appropriate decisions to be made rapidly. This capability is especially vital in a dynamic environment as it provides a pivotal role in increasing the profit margin of the product. The management of this function can be challenging by itself and even more for Small and Medium Enterprises (SMEs) due to the limited resources and expertise available at their disposal. This paper discusses the development of tools and concepts towards effectively managing the purchasing and supply chain function. The developed tools and concepts will provide a cost effective way of managing this function within SMEs. The paper further shows the use of these tools within Contechs, a manufacturer of luxury boat interiors, and the associated benefits achieved as a result of this implementation. Finally a generic framework towards use in such environments is presented.

Keywords: Lean, Supply Chain, High variety Low volume, Small and Medium Enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
255 Consistent Modeling of Functional Dependencies along with World Knowledge

Authors: Sven Rebhan, Nils Einecke, Julian Eggert

Abstract:

In this paper we propose a method for vision systems to consistently represent functional dependencies between different visual routines along with relational short- and long-term knowledge about the world. Here the visual routines are bound to visual properties of objects stored in the memory of the system. Furthermore, the functional dependencies between the visual routines are seen as a graph also belonging to the object-s structure. This graph is parsed in the course of acquiring a visual property of an object to automatically resolve the dependencies of the bound visual routines. Using this representation, the system is able to dynamically rearrange the processing order while keeping its functionality. Additionally, the system is able to estimate the overall computational costs of a certain action. We will also show that the system can efficiently use that structure to incorporate already acquired knowledge and thus reduce the computational demand.

Keywords: Adaptive systems, Knowledge representation, Machinevision, Systems engineering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
254 The Effects of Weather Anomalies on the Quantitative and Qualitative Parameters of Maize Hybrids of Different Genetic Traits in Hungary

Authors: Zs. J. Becze, Á. Krivián, M. Sárvári

Abstract:

Hybrid selection and the application of hybrid specific production technologies are important in terms of the increase of the yield and crop safety of maize. The main explanation for this is climate change, since weather extremes are going on and seem to accelerate in Hungary too.

The biological bases, the selection of appropriate hybrids will be of greater importance in the future. The issue of the adaptability of hybrids will be considerably appreciated. Its good agronomical traits and stress bearing against climatic factors and agrotechnical elements (e.g. different types of herbicides) will be important. There have been examples of 3-4 consecutive droughty years in the past decades, e.g. 1992-1993-1994 or 2009-2011-2012, which made the results of crop production critical. Irrigation cannot be the solution for the problem since currently only the 2% of the arable land is irrigated. Temperatures exceeding the multi-year average are characteristic mainly to the July and August in Hungary, which significantly increase the soil surface evaporation, thus further enhance water shortage. In terms of the yield and crop safety of maize, the weather of these two months is crucial, since the extreme high temperature in July decreases the viability of the pollen and the pistil of maize, decreases the extent of fertilization and makes grain-filling tardy. Consequently, yield and crop safety decrease.

Keywords: Abiotic factors, drought, nutrition content, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
253 Web Driving Performance Monitoring System

Authors: Ahmad Aljaafreh

Abstract:

Safer driver behavior promoting is the main goal of this paper. It is a fact that drivers behavior is relatively safer when being monitored. Thus, in this paper, we propose a monitoring system to report specific driving event as well as the potentially aggressive events for estimation of the driving performance. Our driving monitoring system is composed of two parts. The first part is the in-vehicle embedded system which is composed of a GPS receiver, a two-axis accelerometer, radar sensor, OBD interface, and GPRS modem. The design considerations that led to this architecture is described in this paper. The second part is a web server where an adaptive hierarchical fuzzy system is proposed to classify the driving performance based on the data that is sent by the in-vehicle embedded system and the data that is provided by the geographical information system (GIS). Our system is robust, inexpensive and small enough to fit inside a vehicle without distracting the driver.

Keywords: Driving monitoring system, In-vehicle embedded system, Hierarchical fuzzy system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
252 Second-order Time Evolution Scheme for Time-dependent Neutron Transport Equation

Authors: Zhenying Hong, Guangwei Yuan, Xuedong Fu, Shulin Yang

Abstract:

In this paper, the typical exponential method, diamond difference and modified time discrete scheme is researched for self adaptive time step. The second-order time evolution scheme is applied to time-dependent spherical neutron transport equation by discrete ordinates method. The numerical results show that second-order time evolution scheme associated exponential method has some good properties. The time differential curve about neutron current is more smooth than that of exponential method and diamond difference and modified time discrete scheme.

Keywords: Exponential method, diamond difference, modified time discrete scheme, second-order time evolution scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
251 A Study on Integrated Performance of Tap-Changing Transformer and SVC in Association with Power System Voltage Stability

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Electricity market activities and a growing demand for electricity have led to heavily stressed power systems. This requires operation of the networks closer to their stability limits. Power system operation is affected by stability related problems, leading to unpredictable system behavior. Voltage stability refers to the ability of a power system to sustain appropriate voltage levels through large and small disturbances. Steady-state voltage stability is concerned with limits on the existence of steady-state operating points for the network. FACTS devices can be utilized to increase the transmission capacity, the stability margin and dynamic behavior or serve to ensure improved power quality. Their main capabilities are reactive power compensation, voltage control and power flow control. Among the FACTS controllers, Static Var Compensator (SVC) provides fast acting dynamic reactive compensation for voltage support during contingency events. In this paper, voltage stability assessment with appropriate representations of tap-changer transformers and SVC is investigated. Integrating both of these devices is the main topic of this paper. Effect of the presence of tap-changing transformers on static VAR compensator controller parameters and ratings necessary to stabilize load voltages at certain values are highlighted. The interrelation between transformer off nominal tap ratios and the SVC controller gains and droop slopes and the SVC rating are found. P-V curves are constructed to calculate loadability margins.

Keywords: SVC, voltage stability, P-V curve, reactive power, tap changing transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022
250 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system.

Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, Fault location, Underground Cable, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
249 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System

Authors: S. Yaman, S. Rostami

Abstract:

In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.

Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
248 Design of FIR Filter for Water Level Detection

Authors: Sakol Udomsiri, Masahiro Iwahashi

Abstract:

This paper proposes a new design of spatial FIR filter to automatically detect water level from a video signal of various river surroundings. A new approach in this report applies "addition" of frames and a "horizontal" edge detector to distinguish water region and land region. Variance of each line of a filtered video frame is used as a feature value. The water level is recognized as a boundary line between the land region and the water region. Edge detection filter essentially demarcates between two distinctly different regions. However, the conventional filters are not automatically adaptive to detect water level in various lighting conditions of river scenery. An optimized filter is purposed so that the system becomes robust to changes of lighting condition. More reliability of the proposed system with the optimized filter is confirmed by accuracy of water level detection.

Keywords: water level, video, filter, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
247 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems

Authors: Semih Demir, Anil Celebi

Abstract:

Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.

Keywords: Clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
246 Color Image Segmentation Using Competitive and Cooperative Learning Approach

Authors: Yinggan Tang, Xinping Guan

Abstract:

Color image segmentation can be considered as a cluster procedure in feature space. k-means and its adaptive version, i.e. competitive learning approach are powerful tools for data clustering. But k-means and competitive learning suffer from several drawbacks such as dead-unit problem and need to pre-specify number of cluster. In this paper, we will explore to use competitive and cooperative learning approach to perform color image segmentation. In competitive and cooperative learning approach, seed points not only compete each other, but also the winner will dynamically select several nearest competitors to form a cooperative team to adapt to the input together, finally it can automatically select the correct number of cluster and avoid the dead-units problem. Experimental results show that CCL can obtain better segmentation result.

Keywords: Color image segmentation, competitive learning, cluster, k-means algorithm, competitive and cooperative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
245 Color Image Enhancement Using Multiscale Retinex and Image Fusion Techniques

Authors: Chang-Hsing Lee, Cheng-Chang Lien, Chin-Chuan Han

Abstract:

In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regions. Further, by fusing together the enhanced results of EGMSR and adaptive multiscale retinex (AMSR), we can get a natural fused image having high contrast and proper tonal rendition. Experimental results on several low-contrast images have shown that our proposed approach can produce natural and appealing enhanced images.

Keywords: Image Enhancement, Multiscale Retinex, Image Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
244 An Adaptive Mammographic Image Enhancement in Orthogonal Polynomials Domain

Authors: R. Krishnamoorthy, N. Amudhavalli, M.K. Sivakkolunthu

Abstract:

X-ray mammography is the most effective method for the early detection of breast diseases. However, the typical diagnostic signs such as microcalcifications and masses are difficult to detect because mammograms are of low-contrast and noisy. In this paper, a new algorithm for image denoising and enhancement in Orthogonal Polynomials Transformation (OPT) is proposed for radiologists to screen mammograms. In this method, a set of OPT edge coefficients are scaled to a new set by a scale factor called OPT scale factor. The new set of coefficients is then inverse transformed resulting in contrast improved image. Applications of the proposed method to mammograms with subtle lesions are shown. To validate the effectiveness of the proposed method, we compare the results to those obtained by the Histogram Equalization (HE) and the Unsharp Masking (UM) methods. Our preliminary results strongly suggest that the proposed method offers considerably improved enhancement capability over the HE and UM methods.

Keywords: mammograms, image enhancement, orthogonalpolynomials, contrast improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
243 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: Neural network, rule extraction, rule insertion, self-organizing map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
242 An Adaptive Cooperative Scheme for Reliability of Transmission Using STBC and CDD in Wireless Communications

Authors: Hyun-Jun Shin, Jae-Jeong Kim, Hyoung-Kyu Song

Abstract:

In broadcasting and cellular system, a cooperative  scheme is proposed for the improvement of performance of bit error  rate. Up to date, the coverage of broadcasting system coexists with the  coverage of cellular system. Therefore each user in a cellular coverage  is frequently involved in a broadcasting coverage. The proposed  cooperative scheme is derived from the shared areas. The users receive  signals from both broadcasting station and cellular station. The  proposed scheme selects a cellular base station of a worse channel to  achieve better performance of bit error rate in cooperation. The  performance of the proposed scheme is evaluated in fading channel.

Keywords: Cooperative communication, diversity, STBC, CDD, channel condition, broadcasting system, cellular system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
241 An Adaptive Fuzzy Clustering Approach for the Network Management

Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani

Abstract:

The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.

Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
240 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
239 Optimized Delay Constrained QoS Routing

Authors: P. S. Prakash, S. Selvan

Abstract:

QoS Routing aims to find paths between senders and receivers satisfying the QoS requirements of the application which efficiently using the network resources and underlying routing algorithm to be able to find low-cost paths that satisfy given QoS constraints. The problem of finding least-cost routing is known to be NP-hard or complete and some algorithms have been proposed to find a near optimal solution. But these heuristics or algorithms either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we concentrate an algorithm that finds a near-optimal solution fast and we named this algorithm as optimized Delay Constrained Routing (ODCR), which uses an adaptive path weight function together with an additional constraint imposed on the path cost, to restrict search space and hence ODCR finds near optimal solution in much quicker time.

Keywords: QoS, Delay, Routing, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
238 Post-Compression Consideration in Video Watermarking for Wireless Communication

Authors: Chuen-Ching Wang, Yao-Tang Chang, Yu-Chang Hsu

Abstract:

A simple but effective digital watermarking scheme utilizing a context adaptive variable length coding (CAVLC) method is presented for wireless communication system. In the proposed approach, the watermark bits are embedded in the final non-zero quantized coefficient of each DCT block, thereby yielding a potential reduction in the length of the coded block. As a result, the watermarking scheme not only provides the means to check the authenticity and integrity of the video stream, but also improves the compression ratio and therefore reduces both the transmission time and the storage space requirements of the coded video sequence. The results confirm that the proposed scheme enables the detection of malicious tampering attacks and reduces the size of the coded H.264 file. Therefore, the current study is feasible to apply in the video applications of wireless communication such as 3G system

Keywords: 3G, wireless communication, CAVLC, digitalwatermarking, motion compensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
237 Towards Finite Element Modeling of the Accoustics of Human Head

Authors: Maciej Paszynski, Leszek Demkowicz, Jason Kurtz

Abstract:

In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.

Keywords: finite element method, acoustics, coupled problems, biomechanics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
236 A Brain Inspired Approach for Multi-View Patterns Identification

Authors: Yee Ling Boo, Damminda Alahakoon

Abstract:

Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.

Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
235 Adaptive Hierarchical Key Structure Generation for Key Management in Wireless Sensor Networks using A*

Authors: Jin Myoung Kim, Tae Ho Cho

Abstract:

Wireless Sensor networks have a wide spectrum of civil and military applications that call for secure communication such as the terrorist tracking, target surveillance in hostile environments. For the secure communication in these application areas, we propose a method for generating a hierarchical key structure for the efficient group key management. In this paper, we apply A* algorithm in generating a hierarchical key structure by considering the history data of the ratio of addition and eviction of sensor nodes in a location where sensor nodes are deployed. Thus generated key tree structure provides an efficient way of managing the group key in terms of energy consumption when addition and eviction event occurs. A* algorithm tries to minimize the number of messages needed for group key management by the history data. The experimentation with the tree shows efficiency of the proposed method.

Keywords: Heuristic search, key management, security, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
234 RANFIS : Rough Adaptive Neuro-Fuzzy Inference System

Authors: Sandeep Chandana, Rene V. Mayorga

Abstract:

The paper presents a new hybridization methodology involving Neural, Fuzzy and Rough Computing. A Rough Sets based approximation technique has been proposed based on a certain Neuro – Fuzzy architecture. A New Rough Neuron composition consisting of a combination of a Lower Bound neuron and a Boundary neuron has also been described. The conventional convergence of error in back propagation has been given away for a new framework based on 'Output Excitation Factor' and an inverse input transfer function. The paper also presents a brief comparison of performances, of the existing Rough Neural Networks and ANFIS architecture against the proposed methodology. It can be observed that the rough approximation based neuro-fuzzy architecture is superior to its counterparts.

Keywords: Boundary neuron, neuro-fuzzy, output excitation factor, RANFIS, rough approximation, rough neural computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704