Search results for: Texture Feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1108

Search results for: Texture Feature

478 Categorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs

Authors: Pilar Rey-del-Castillo, Jesús Cardeñosa

Abstract:

There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson-s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.

Keywords: Classifier, imputation techniques, fuzzy systems, fuzzy min-max neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
477 Extraction of Significant Phrases from Text

Authors: Yuan J. Lui

Abstract:

Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.

Keywords: classification, keyphrase extraction, machine learning, summarization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
476 Bearing Fault Feature Extraction by Recurrence Quantification Analysis

Authors: V. G. Rajesh, M. V. Rajesh

Abstract:

In rotating machinery one of the critical components that is prone to premature failure is the rolling bearing. Consequently, early warning of an imminent bearing failure is much critical to the safety and reliability of any high speed rotating machines. This study is concerned with the application of Recurrence Quantification Analysis (RQA) in fault detection of rolling element bearings in rotating machinery. Based on the results from this study it is reported that the RQA variable, percent determinism, is sensitive to the type of fault investigated and therefore can provide useful information on bearing damage in rolling element bearings.

Keywords: Bearing fault detection, machine vibrations, nonlinear time series analysis, recurrence quantification analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
475 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Supported copper-manganese-lanthanum catalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
474 The Overload Behaviour of Reinforced Concrete Flexural Members

Authors: Angelo Thurairajah

Abstract:

Sufficient ultimate deformation is necessary to demonstrate the member ductility, which is dependent on the section and the material ductility. The concrete cracking phase of softening prior to the plastic hinge formation is an essential feature as well. The nature of the overload behaviour is studied using the order of the ultimate deflection. The ultimate deflection is primarily dependent on the slenderness (span to depth ratio), the ductility of the reinforcing steel, the degree of moment redistribution, the type of loading, and the support conditions. The ultimate deflection and the degree of moment redistribution from the analytical study are in good agreement with the experimental results and the moment redistribution provisions of the Australian Standards AS3600 Concrete Structures Code.

Keywords: Ductility, softening, ultimate deflection, overload behaviour, moment redistribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396
473 Soft Computing based Retrieval System for Medical Applications

Authors: Pardeep Singh, Sanjay Sharma

Abstract:

With increasing data in medical databases, medical data retrieval is growing in popularity. Some of this analysis including inducing propositional rules from databases using many soft techniques, and then using these rules in an expert system. Diagnostic rules and information on features are extracted from clinical databases on diseases of congenital anomaly. This paper explain the latest soft computing techniques and some of the adaptive techniques encompasses an extensive group of methods that have been applied in the medical domain and that are used for the discovery of data dependencies, importance of features, patterns in sample data, and feature space dimensionality reduction. These approaches pave the way for new and interesting avenues of research in medical imaging and represent an important challenge for researchers.

Keywords: CBIR, GA, Rough sets, CBMIR, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
472 On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture

Authors: A. Tellaeche, X. P. Burgos-Artizzu, G. Pajares, A. Ribeiro

Abstract:

One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.

Keywords: Fuzzy k-Means, Precision agriculture, SupportVectors Machines, Weed detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
471 Using Fractional Factorial Designs for Variable Importance in Random Forest Models

Authors: Ewa. M. Sztendur, Neil T. Diamond

Abstract:

Random Forests are a powerful classification technique, consisting of a collection of decision trees. One useful feature of Random Forests is the ability to determine the importance of each variable in predicting the outcome. This is done by permuting each variable and computing the change in prediction accuracy before and after the permutation. This variable importance calculation is similar to a one-factor-at a time experiment and therefore is inefficient. In this paper, we use a regular fractional factorial design to determine which variables to permute. Based on the results of the trials in the experiment, we calculate the individual importance of the variables, with improved precision over the standard method. The method is illustrated with a study of student attrition at Monash University.

Keywords: Random Forests, Variable Importance, Fractional Factorial Designs, Student Attrition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
470 A Novel Approach for Coin Identification using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms

Authors: J. Prakash, K. Rajesh

Abstract:

In this paper we present a new method for coin identification. The proposed method adopts a hybrid scheme using Eigenvalues of covariance matrix, Circular Hough Transform (CHT) and Bresenham-s circle algorithm. The statistical and geometrical properties of the small and large Eigenvalues of the covariance matrix of a set of edge pixels over a connected region of support are explored for the purpose of circular object detection. Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain only a small number of non-zero elements, they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of the circumference pixels is identified using Raster scan algorithm which uses geometrical symmetry property. After finding circular objects, the proposed method uses the texture on the surface of the coins called texton, which are unique properties of coins, refers to the fundamental micro structure in generic natural images. This method has been tested on several real world images including coin and non-coin images. The performance is also evaluated based on the noise withstanding capability.

Keywords: Circular Hough Transform, Coin detection, Covariance matrix, Eigenvalues, Raster scan Algorithm, Texton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
469 Use of Ecommerce Websites in Developing Countries

Authors: Vera Pujani

Abstract:

The purpose of this study is to investiagte the use of the ecommerce website in Indonesia as a developing country. The ecommerce website has been identified having the significant impact on business activities in particular solving the geographical problem for islanded countries likes Indonesia. Again, website is identified as a crucial marketing tool. This study presents the effect of quality and features on the use and user satisfaction employing ecommerce websites. Survey method for 115 undergraduate students of Management Department in Andalas University who are attending Management Information Systems (SIM) class have been undertaken. The data obtained is analyzed using Structural Equation Modeling (SEM) using SmartPLS program. This result found that quality of system and information, feature as well satisfaction influencing the use ecommerce website in Indonesia contexts.

Keywords: Use, Developing Country, Satisfaction, Website

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
468 Automatic Detection of Breast Tumors in Sonoelastographic Images Using DWT

Authors: A. Sindhuja, V. Sadasivam

Abstract:

Breast Cancer is the most common malignancy in women and the second leading cause of death for women all over the world. Earlier the detection of cancer, better the treatment. The diagnosis and treatment of the cancer rely on segmentation of Sonoelastographic images. Texture features has not considered for Sonoelastographic segmentation. Sonoelastographic images of 15 patients containing both benign and malignant tumorsare considered for experimentation.The images are enhanced to remove noise in order to improve contrast and emphasize tumor boundary. It is then decomposed into sub-bands using single level Daubechies wavelets varying from single co-efficient to six coefficients. The Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) features are extracted and then selected by ranking it using Sequential Floating Forward Selection (SFFS) technique from each sub-band. The resultant images undergo K-Means clustering and then few post-processing steps to remove the false spots. The tumor boundary is detected from the segmented image. It is proposed that Local Binary Pattern (LBP) from the vertical coefficients of Daubechies wavelet with two coefficients is best suited for segmentation of Sonoelastographic breast images among the wavelet members using one to six coefficients for decomposition. The results are also quantified with the help of an expert radiologist. The proposed work can be used for further diagnostic process to decide if the segmented tumor is benign or malignant.

Keywords: Breast Cancer, Segmentation, Sonoelastography, Tumor Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
467 Atmospheric Plasma Innovative Roll-to-Roll Machine for Continuous Materials

Authors: I. Kulyk, M. Stefan

Abstract:

Atmospheric plasma is emerging as a promising technology for many industrial sectors, because of its ecological and economic advantages respect to the traditional production processes. For textile industry, atmospheric plasma is becoming a valid alternative to the conventional wet processes, but the plasma machines realized so far do not allow the treatment of fibrous mechanically weak material. Novel atmospheric plasma machine for industrial applications, developed by VenetoNanotech SCpA in collaboration with Italian producer of corona equipment ME.RO SpA is presented. The main feature of this pre-industrial scale machine is the possibility of the inline plasma treatment of delicate fibrous substrates such as fibre sleeves, for example wool tops, cotton fibres, polymeric tows, mineral fibers and so on, avoiding burnings and disruption of the faint materials.

Keywords: Atmospheric plasma, industrial machine, fibrous materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
466 Collaborative Professional Education for e-Teaching in Networked Schools

Authors: Ken Stevens

Abstract:

Networked schools have become a feature of education systems in countries that seek to provide learning opportunities in schools located beyond major centres of population. The internet and e-learning have facilitated the development of virtual educational structures that complement traditional schools, encouraging collaborative teaching and learning to proceed. In rural New Zealand and in the Atlantic Canadian province of Newfoundland and Labrador, e-learning is able to provide new ways of organizing teaching, learning and the management of educational opportunities. However, the future of e-teaching and e-learning in networked schools depends on the development of professional education programs that prepare teachers for collaborative teaching and learning environments in which both virtual and traditional face to face instruction co-exist.

Keywords: Advanced Placement, Cybercells, Extranet, Intranet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
465 A New Face Recognition Method using PCA, LDA and Neural Network

Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani

Abstract:

In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.

Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213
464 Changes in EEG and HRV during Event-Related Attention

Authors: Sun K. Yoo, Chung K. Lee

Abstract:

Determination of attentional status is important because working performance and an unexpected accident is highly related with the attention. The autonomic nervous and the central nervous systems can reflect the changes in person’s attentional status. Reduced number of suitable pysiological parameters among autonomic and central nervous systems related signal parameters will be critical in optimum design of attentional devices. In this paper, we analyze the EEG (Electroencephalography) and HRV (Heart Rate Variability) signals to demonstrate the effective relation with brain signal and cardiovascular signal during event-related attention, which will be later used in selecting the minimum set of attentional parameters. Time and frequency domain parameters from HRV signal and frequency domain parameters from EEG signal are used as input to the optimum feature parameters selector.

Keywords: EEG, HRV, attentional status.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
463 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles

Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou

Abstract:

The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.

Keywords: Fault detection, feature selection, machine learning, predictive maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
462 Vehicle Position Estimation for Driver Assistance System

Authors: Hyun-Koo Kim, Sangmoon Lee, Ho-Youl Jung, Ju H. Park

Abstract:

We present a system that finds road boundaries and constructs the virtual lane based on fusion data from a laser and a monocular sensor, and detects forward vehicle position even in no lane markers or bad environmental conditions. When the road environment is dark or a lot of vehicles are parked on the both sides of the road, it is difficult to detect lane and road boundary. For this reason we use fusion of laser and vision sensor to extract road boundary to acquire three dimensional data. We use parabolic road model to calculate road boundaries which is based on vehicle and sensors state parameters and construct virtual lane. And then we distinguish vehicle position in each lane.

Keywords: Vehicle Detection, Adaboost, Haar-like Feature, Road Boundary Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
461 A ZVT-ZCT-PWM DC-DC Boost Converter with Direct Power Transfer

Authors: Naim Suleyman Ting, Yakup Sahin, Ismail Aksoy

Abstract:

This paper presents a zero voltage transition-zero current transition (ZVT-ZCT)-PWM DC-DC boost converter with direct power transfer. In this converter, the main switch turns on with ZVT and turns off with ZCT. The auxiliary switch turns on and off with zero current switching (ZCS). The main diode turns on with ZVS and turns off with ZCS. Besides, the additional current or voltage stress does not occur on the main device. The converter has features as simple structure, fast dynamic response and easy control. Also, the proposed converter has direct power transfer feature as well as excellent soft switching techniques. In this study, the operating principle of the converter is presented and its operation is verified for 1 kW and 100 kHz model.

Keywords: Direct power transfer, boost converter, zero-voltage transition, zero-current transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
460 ZVZCT PWM Boost DC-DC Converter

Authors: İsmail Aksoy, Hacı Bodur, Nihan Altıntas

Abstract:

This paper introduces a boost converter with a new active snubber cell. In this circuit, all of the semiconductor components in the converter softly turns on and turns off with the help of the active snubber cell. Compared to the other converters, the proposed converter has advantages of size, number of components and cost. The main feature of proposed converter is that the extra voltage stresses do not occur on the main switches and main diodes. Also, the current stress on the main switch is acceptable level. Moreover, the proposed converter can operates under light load conditions and wide input line voltage. In this study, the operating principle of the proposed converter is presented and its operation is verified with the Proteus simulation software for a 1 kW and 100 kHz model.

Keywords: Active snubber cell, boost converter, zero current switching, zero voltage switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
459 Analysis of Sonogram Images of Thyroid Gland Based on Wavelet Transform

Authors: M. Bastanfard, B. Jalaeian, S. Jafari

Abstract:

Sonogram images of normal and lymphocyte thyroid tissues have considerable overlap which makes it difficult to interpret and distinguish. Classification from sonogram images of thyroid gland is tackled in semiautomatic way. While making manual diagnosis from images, some relevant information need not to be recognized by human visual system. Quantitative image analysis could be helpful to manual diagnostic process so far done by physician. Two classes are considered: normal tissue and chronic lymphocyte thyroid (Hashimoto's Thyroid). Data structure is analyzed using K-nearest-neighbors classification. This paper is mentioned that unlike the wavelet sub bands' energy, histograms and Haralick features are not appropriate to distinguish between normal tissue and Hashimoto's thyroid.

Keywords: Sonogram, thyroid, Haralick feature, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
458 Evolving Neural Networks using Moment Method for Handwritten Digit Recognition

Authors: H. El Fadili, K. Zenkouar, H. Qjidaa

Abstract:

This paper proposes a neural network weights and topology optimization using genetic evolution and the backpropagation training algorithm. The proposed crossover and mutation operators aims to adapt the networks architectures and weights during the evolution process. Through a specific inheritance procedure, the weights are transmitted from the parents to their offsprings, which allows re-exploitation of the already trained networks and hence the acceleration of the global convergence of the algorithm. In the preprocessing phase, a new feature extraction method is proposed based on Legendre moments with the Maximum entropy principle MEP as a selection criterion. This allows a global search space reduction in the design of the networks. The proposed method has been applied and tested on the well known MNIST database of handwritten digits.

Keywords: Genetic algorithm, Legendre Moments, MEP, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
457 Burst on Hurst Algorithm for Detecting Activity Patterns in Networks of Cortical Neurons

Authors: G. Stillo, L. Bonzano, M. Chiappalone, A. Vato, F. Davide, S. Martinoia

Abstract:

Electrophysiological signals were recorded from primary cultures of dissociated rat cortical neurons coupled to Micro-Electrode Arrays (MEAs). The neuronal discharge patterns may change under varying physiological and pathological conditions. For this reason, we developed a new burst detection method able to identify bursts with peculiar features in different experimental conditions (i.e. spontaneous activity and under the effect of specific drugs). The main feature of our algorithm (i.e. Burst On Hurst), based on the auto-similarity or fractal property of the recorded signal, is the independence from the chosen spike detection method since it works directly on the raw data.

Keywords: Burst detection, cortical neuronal networks, Micro-Electrode Array (MEA), wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
456 Echo State Networks for Arabic Phoneme Recognition

Authors: Nadia Hmad, Tony Allen

Abstract:

This paper presents an ESN-based Arabic phoneme recognition system trained with supervised, forced and combined supervised/forced supervised learning algorithms. Mel-Frequency Cepstrum Coefficients (MFCCs) and Linear Predictive Code (LPC) techniques are used and compared as the input feature extraction technique. The system is evaluated using 6 speakers from the King Abdulaziz Arabic Phonetics Database (KAPD) for Saudi Arabia dialectic and 34 speakers from the Center for Spoken Language Understanding (CSLU2002) database of speakers with different dialectics from 12 Arabic countries. Results for the KAPD and CSLU2002 Arabic databases show phoneme recognition performances of 72.31% and 38.20% respectively.

Keywords: Arabic phonemes recognition, echo state networks (ESNs), neural networks (NNs), supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
455 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors

Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder

Abstract:

In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished though the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.

Keywords: Analog to digital conversion, digitization, sampling rate, ultrasonic sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446
454 Reversible Watermarking for H.264/AVC Videos

Authors: Yih-Chuan Lin, Jung-Hong Li

Abstract:

In this paper, we propose a reversible watermarking scheme based on histogram shifting (HS) to embed watermark bits into the H.264/AVC standard videos by modifying the last nonzero level in the context adaptive variable length coding (CAVLC) domain. The proposed method collects all of the last nonzero coefficients (or called last level coefficient) of 4×4 sub-macro blocks in a macro block and utilizes predictions for the current last level from the neighbor block-s last levels to embed watermark bits. The feature of the proposed method is low computational and has the ability of reversible recovery. The experimental results have demonstrated that our proposed scheme has acceptable degradation on video quality and output bit-rate for most test videos.

Keywords: Reversible data hiding, H.264/AVC standard, CAVLC, Histogram shifting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
453 XML Data Management in Compressed Relational Database

Authors: Hongzhi Wang, Jianzhong Li, Hong Gao

Abstract:

XML is an important standard of data exchange and representation. As a mature database system, using relational database to support XML data may bring some advantages. But storing XML in relational database has obvious redundancy that wastes disk space, bandwidth and disk I/O when querying XML data. For the efficiency of storage and query XML, it is necessary to use compressed XML data in relational database. In this paper, a compressed relational database technology supporting XML data is presented. Original relational storage structure is adaptive to XPath query process. The compression method keeps this feature. Besides traditional relational database techniques, additional query process technologies on compressed relations and for special structure for XML are presented. In this paper, technologies for XQuery process in compressed relational database are presented..

Keywords: XML, compression, query processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
452 Dispenser Longitudinal Movement ControlDesign Based on Auto - Disturbances –Rejection - Controller

Authors: Qiaozhen Song

Abstract:

Based on the feature of model disturbances and uncertainty being compensated dynamically in auto – disturbances-rejection-controller (ADRC), a new method using ADRC is proposed for the decoupling control of dispenser longitudinal movement in big flight envelope. Developed from nonlinear model directly, ADRC is especially suitable for dynamic model that has big disturbances. Furthermore, without changing the structure and parameters of the controller in big flight envelope, this scheme can simplify the design of flight control system. The simulation results in big flight envelope show that the system achieves high dynamic performance, steady state performance and the controller has strong robustness.

Keywords: ADRC, ESO, nonlinear system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
451 Investigation of Proximate Value, Sensorial Evaluation, Flesh Yield of Shrimp (Parapenaus longirostris) (Lucas, 1846) between Populations in the Marmara and Northern Aegean Sea

Authors: Zafer Ceylan, Gülgün F. Unal Sengor, Onur Gönülal

Abstract:

The differences on proximate composition, sensorial analysis (for raw and cooked samples) and flesh productivity of the samples of Parapenaus longirostris that were caught in the North Aegean Sea and Marmara Sea were investigated. Moisture, protein, lipid, ash, carbohydrate, energy content of the North Aegean Sea shrimp were found 74.92 ± 0.1, 20.32 ± 0.16, 2.55 ± 0.1, 2.13 ± 0.08, 0.08%, 110.1 kcal/100 g, respectively. On the other hand, the Marmara Sea shrimp was found 76.9 ± 0.02, 19.06 ± 0.03, 2.22 ± 0.08, 1.51 ± 0.04, 0.33, 102.77 kcal/100g, respectively. Protein, lipid, ash and energy values of the Northern Aegean Sea shrimp were higher than the Marmara Sea shrimp. On the other hand, moisture, carbohydrate values of the Northern Aegean Sea shrimp were lower than the Marmara samples. Sensorial analyses were carried on for raw and cooked samples. Among all properties for raw samples, flesh color, shrimp connective tissue, shrimp body parameters were different from each other according to the result of the panel. According to the result of the cooked shrimp samples among all properties, cooked odour, flavor and texture were different from each other as well. Especially, flavor and textural properties of cooked shrimps of the Northern Aegean Sea were higher than the Marmara Sea shrimp. The flesh yield of the Northern Aegean Sea shrimp was found 46.42%, while Marmara Sea shrimp was found 47.74%.

Keywords: Proximate value, sensorial evaluation, Parapenaus longirostris flesh yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
450 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
449 Network Anomaly Detection using Soft Computing

Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee

Abstract:

One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.

Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955