Search results for: Metal and metal oxide sorbents
363 Generation of Highly Ordered Porous Antimony-Doped Tin Oxide Film by A Simple Coating Method with Colloidal Template
Authors: Asep Bayu Dani Nandiyanto, Asep Suhendi, Yutaka Kisakibaru, Takashi Ogi, Kikuo Okuyama
Abstract:
An ordered porous antimony-doped tin oxide (ATO) film was successfully prepared using a simple coating process with colloidal templates. The facile production was effective when a combination of 16-nm ATO (as a model of an inorganic nanoparticle) and polystyrene (PS) spheres (as a model of the template) weresimply coated to produce a composite ATO/PS film. Heat treatment was then used to remove the PS and produce the porous film. The porous film with a spherical pore shape and a highly ordered porous structure could be obtained. A potential way for the control of pore size could be also achieved by changing initial template size. The theoretical explanation and mechanism of porous formation were also added, which would be important for the scaling-up prediction and estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571362 An Optimization Analysis on an Automotive Component with Fatigue Constraint Using HyperWorks Software for Environmental Sustainability
Authors: W. M. Wan Muhamad, E. Sujatmika, M.R. Idris, S.A. Syed Ahmad
Abstract:
A finite element analysis (FEA) computer software HyperWorks is utilized in re-designing an automotive component to reduce its mass. Reduction of components mass contributes towards environmental sustainability by saving world-s valuable metal resources and by reducing carbon emission through improved overall vehicle fuel efficiency. A shape optimization analysis was performed on a rear spindle component. Pre-processing and solving procedures were performed using HyperMesh and RADIOSS respectively. Shape variables were defined using HyperMorph. Then optimization solver OptiStruct was utilized with fatigue life set as a design constraint. Since Stress-Number of Cycle (S-N) theory deals with uni-axial stress, the Signed von Misses stress on the component was used for looking up damage on S-N curve, and Gerber criterion for mean stress corrections. The optimization analysis resulted in mass reduction of 24% of the original mass. The study proved that the adopted approach has high potential use for environmental sustainability.
Keywords: Environmental Sustainability, Shape Optimization, Fatigue, Rear Spindle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4291361 Fabrication of High Aluminum Content Mg alloys using a Horizontal Twin Roll Caster
Authors: H. Harada, S. Nishida, T. Nagumo, M. Endo, H. Watari
Abstract:
This study was aimed for investigating of manufacturing high aluminum content Mg alloys using a horizontal twin roll caster. Recently, weight saving has been key issues for lighter transport equipments as well as electronic component parts. As alternative materials to aluminum alloys, developing magnesium alloy with higher strength has been expected. Normally high Aluminum content Mg alloy has poor ductility and is difficult to be rolled because of its high strength. However, twin roll casting process is suitable for manufacturing wrought Mg alloys because materials can be cast directly from molten metal. In this study, manufacturing of high aluminum content magnesium alloy sheet using the roll casting process has been carried out. Effects of manufacturing parameter, such as roll velocity, pouring temperature and roll gap, on casting was investigated. A microscopic observation of the crystals of cross section of as cast strip as well as rolled strip was conducted.Keywords: AZ91, AZ111, AZ121, Magnesium alloys, Twin roll casting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029360 Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/TiO2 Nano-Composite Coatings
Authors: S. Mahdavi, S. R. Allahkaram
Abstract:
Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nanoparticles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nanoparticles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.Keywords: Co-Cr alloy, electrodeposition, nano-composite, tribological behavior, trivalent chromium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799359 The Antioxidant Capacity of Beverage Blends Made from Cocoa, Zobo and Ginger
Authors: Folasade F. Awe, Tayo N. Fagbemi, Comfort F. Ajibola, Adebanjo A. Badejo
Abstract:
The antioxidant capability of beverage blends made from cocoa, zobo and ginger with standard antioxidant assay procedures was investigated. The DPPH (2,2-diphenyl-1- picrylhydrazyl) scavenging capacity ranged from 21.2-25.8% in comparison with GSH of 37.1%. The ferric reducing ability was highest in the zobo drink and lowest in ginger. The superoxide scavenging capacity was also highest in the zobo drink followed by the drink with alkalized cocoa. The metal chelating power decreased as the level of zobo in the blends decreases. The chelating power of zobo and ginger were significantly lower than the natural and alkalized cocoa. The 100% zobo drink inhibited linoleic acid till the fifth day while natural and alkalized cocoa as well as the blend with 50% alkalized cocoa inhibited linoleic acid greatly till the sixth day. The finding describes the potential health benefit of the phytochemical antioxidants of cocoa:zobo:ginger beverage blends.
Keywords: Antioxidant, cocoa, ginger, health benefit, zobo blend.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451358 Separating Permanent and Induced Magnetic Signature: A Simple Approach
Authors: O. J. G. Somsen, G. P. M. Wagemakers
Abstract:
Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.
Keywords: Magnetic signature, data analysis, magnetization, deperming techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076357 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing
Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang
Abstract:
Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.
Keywords: Additive manufacturing, finite element method, molten pool dimensions, selective laser melting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658356 Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds
Authors: А. V. Panko, Е. V. Ablets, I. G. Kovzun, М. А. Ilyashov
Abstract:
Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nanotechnological initiatives in improvement of such processes. Considered ideas of role of nanoparticles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless method of solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities was developed and it excels known methods of direct iron reduction from iron ores and metallurgical slimes.
Keywords: Iron ores, solid-phase reduction, nanoparticles in reduction and purification of iron from silicon and phosphorus, wasteless method of ores processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796355 Wetting Properties of Silver Based Alloys
Authors: Zoltán Weltsch, József Hlinka, Eszter Kókai
Abstract:
The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygenalloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail.
Keywords: Contact angle, graphite, silver, soldering, solid solubility, substrate, temperature dependence, wetting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529354 Effects of Formic Acid on the Chemical State and Morphology of As-synthesized and Annealed ZnO Films
Authors: Chueh-Jung Huang, Chia-Hung Li, Hsueh-Lung Wang, Tsun-Nan Lin
Abstract:
Zinc oxide thin films with various microstructures were grown on substrates by using HCOOH-sols. The reaction mechanism of the sol system was investigated by performing an XPS analysis of as-synthesized films, due to the products of hydrolysis and condensation in the sol system contributing to the chemical state of the as-synthesized films. The chemical structures of the assynthesized films related to the microstructures of the final annealed films were also studied. The results of the Zn 2p3/2, C 1s and O1s XPS patterns indicate that the hydrolysis reaction in the sol system is strongly influenced by the HCOOH agent. The results of XRD and FE-SEM demonstrated the microstructures of the annealed films are related to the content of hydrolyzed zinc hydrate (Zn-OH) species present, and that content of the Zn-OH species in the sol system increases the HCOOH adding, and these Zn-OH species existing in the sol phase are responsible for large ZnO crystallites in the final annealed films.Keywords: zinc oxide, hydrolysis catalyst, zinc acetate source, formic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660353 Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.
Keywords: Slit circular shear panel damper, Hysteresis Characteristics, Slip length-to-width ratio, D/t ratio, FE analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496352 Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results
Authors: A. Pourkamali Anaraki, M. Shahabizadeh, B. Babaee
Abstract:
The plastic forming process of sheet plate takes an important place in forming metals. The traditional techniques of tool design for sheet forming operations used in industry are experimental and expensive methods. Prediction of the forming results, determination of the punching force, blank holder forces and the thickness distribution of the sheet metal will decrease the production cost and time of the material to be formed. In this paper, multi-stage deep drawing simulation of an Industrial Part has been presented with finite element method. The entire production steps with additional operations such as intermediate annealing and springback has been simulated by ABAQUS software under axisymmetric conditions. The simulation results such as sheet thickness distribution, Punch force and residual stresses have been extracted in any stages and sheet thickness distribution was compared with experimental results. It was found through comparison of results, the FE model have proven to be in close agreement with those of experiment.Keywords: Deep drawing, Finite element method, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5077351 Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment
Authors: D. Kuchar, T. Fukuta, M. Kubota, H. Matsuda
Abstract:
The selective recovery of heavy metals of Cu, Zn, Ni and Cr from a mixed plating sludge by sulfidation and oxidation treatment was targeted in this study. At first, the mixed plating sludge was simultaneously subjected to an extraction and Cu sulfidation process at pH=1.5 to dissolve heavy metals and to precipitate Cu2+ as CuS. In the next step, the sulfidation treatment of Zn was carried out at pH=4.5 and the residual solution was subjected to an oxidation treatment of chromium with H2O2 at pH=10.0. After the experiments, the selectivity of metal precipitation and the chromium oxidation ratio were evaluated. As results, it was found that the filter cake obtained after selective sulfidation of Cu was composed of 96.6% of Cu (100% equals to the sum of Cu, Zn, Ni and Cr contents). Such findings confirmed that almost complete extraction of heavy metals was achieved at pH=1.5 and also that Cu could be selectively recovered as CuS. Further, the filter cake obtained at pH=4.5 was composed of 91.5% Zn and 6.83% of Cr. Regarding the chromium oxidation step, the chromium oxidation ratio was found to increase with temperature and the addition of oxidation agent of H2O2, but only oxidation ratio of 59% was achieved at a temperature of 60°C and H2O2 to Cr3+ equivalent ratio of 180.
Keywords: Chromium recovery, oxidation, plating sludge, sulfidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640350 Characterising the Effects of Sand Blasting on Formed Steel Samples
Authors: Esther T. Akinlabi, Enoch Ogunmuyiwa, Stephen A. Akinlabi
Abstract:
The present research study focuses on the investigation of the influence of sand blasting on formed mild steel samples. The investigation involved the examinations on the parent material and a sand blasted material. The results were compared to the mechanically formed materials (sand and non-sand blasted) as well as a laser formed material (sand and non-sand blasted). Each material was characterized for the grain sizes and hardness. The percentage change in the grain sizes was quantified and correlation to the microhardness values was established. The Ultimate Tensile Strength (UTS) of the materials was also quantified using the obtained hardness values. The investigations revealed that the sand blasting causes an increase in the Vickers microhardness values of all the materials which also led to an increase in the UTS. After the forming operation, the microstructure revealed elongated grains as compared to almost equiaxed obtained from the parent non-sand blasted materials.
Keywords: Grain size, hardness, metal forming, sand blasting, ultimate tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5626349 Removal of Hydrogen Sulfide in Terms of Scrubbing Techniques using Silver Nano-Particles
Authors: SeungKyu Shin, Jeong Hyub Ha, Sung Han, JiHyeon Song
Abstract:
Silver nano-particles have been used for antibacterial purpose and it is also believed to have removal of odorous compounds, oxidation capacity as a metal catalyst. In this study, silver nano-particles in nano sizes (5-30 nm) were prepared on the surface of NaHCO3, the supporting material, using a sputtering method that provided high silver content and minimized conglomerating problems observed in the common AgNO3 photo-deposition method. The silver nano-particles were dispersed by dissolving Ag-NaHCO3 into water, and the dispersed silver nano-particles in the aqueous phase were applied to remove inorganic odor compounds, H2S, in a scrubbing reactor. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (SO4 2-) ion increased with time due to the oxidation reaction by silver as a catalyst. Consequently, the experimental results demonstrated that the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproductsKeywords: Silver nano-particles, Scrubbing, Oxidation, Hydrogen sulfide, Ammonia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402348 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method
Authors: C. C. Chen, C. M. Chu, C. J. Wang, C. Y. Chen, K. J. Huang
Abstract:
Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.
Keywords: Cesiumiodide, AAO, scintillator, crystal, X-ray.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064347 Sorptive Storage of Natural Gas on Molecular Sieves: Dynamic Investigation
Authors: S. Al-Asheh, K. Al-Emadi
Abstract:
In recent years, there have been attempts to store natural gas in adsorptive form. This is called adsorptive natural gas, or ANG. The problem with this technology is the low sorption capacity. The purpose is to achieve compressed natural gas (CNG) capacity of 230 V/V. Further research is required to achieve such target. Several research studies have been performed with this target; through either the modification or development of new sorbents or the optimization of the operation sorption process itself. In this work, storage of methane on molecular sieves 5A and 13X was studied on dry basis, and on wet basis to certain extent. The temperature and the pressure dynamics were investigated. The results indicated that regardless of the charge pressure, the time for the peak temperature during the methane charge process is always the same. This can be used as a characteristic of the adsorbent. The total achieved deliveries using molecular sieves were much lower than that of activated carbons; 53.0 V/V for the case of 13X molecular sieves and 43 V/V for the case of 5A molecular sieves, both at 2oC and 4 MPa (580 psi). Investigation of charge pressure dynamic using wet molecular sieves at 2oC and a mass ratio of 0.5, revealed slowness of the process and unexpected behavior.Keywords: Methane, Molecular sieves, Adsorption, Delivery, Storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993346 Investigation of a Hybrid Process: Multipoint Incremental Forming
Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo
Abstract:
Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.Keywords: Incremental forming, numerical simulation, MPIF, multipoint forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312345 A Study of the Variables in the Optimisation of a Platinum Precipitation Process
Authors: Tebogo Phetla, Edison Muzenda, M Belaid
Abstract:
This study investigated possible ways to improve the efficiency of the platinum precipitation process using ammonium chloride by reducing the platinum content reporting to the effluent. The ore treated consist of five platinum group metals namely, ruthenium, rhodium, iridium, platinum, palladium and a precious metal gold. Gold, ruthenium, rhodium and iridium were extracted prior the platinum precipitation process. Temperature, reducing agent, flow rate and potential difference were the variables controlled to determine the operation conditions for optimum platinum precipitation efficiency. Hydrogen peroxide was added as the oxidizing agent at the temperature of 85-90oC and potential difference of 700-850mV was the variable used to check the oxidizing state of platinum. The platinum was further purified at temperature between 60-65oC, potential difference above 700 mV, ammonium chloride of 200 l, and at these conditions the platinum content reporting to the effluent was reduced to less than 300ppm, resulting in optimum platinum precipitation efficiency and purity of 99.9%.Keywords: Platinum Group Metals (PGM), Potential difference, Precipitation, Redox reactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4789344 Methods for Manufacture of Corrugated Wire Mesh Laminates
Authors: Jeongho Choi, Krishna Shankar, Alan Fien, Andrew Neely
Abstract:
Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.Keywords: cellular solids, corrugation, foam, open-cell, metal mesh, laminate, stainless steel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208343 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents
Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna Mohd Zain
Abstract:
Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 150oC.Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.
Keywords: Activated carbon, Palm shell-PEEK, Regeneration, thermal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409342 Interaction of between Cd and Zn in Barley (Hordeum vulgare L.) Plant for Phytoextraction Method
Authors: S. Adiloğlu, K. Bellitürk, Y. Solmaz, A. Adiloğlu
Abstract:
The aim of this research is to remediation of the cadmium (Cd) pollution in agricultural soils by using barley (Hordeum vulgare L.) plant. For this purpose, a pot experiment was done in greenhouse conditions. Cadmium (100 mg/kg) as CdSO4.8H2O forms was applied to each pot and incubated during 30 days. Then Ethylenediamine tetraacetic acid (EDTA) chelate was applied to each pot at five doses (0, 3, 6, 8 and 10 mmol/kg) 20 days before harvesting time of the barley plants. The plants were harvested after two months planting. According to the pot experiment results, Cd and Zn amounts of barley plant increased with increasing EDTA application and Zn and Cd contents of barley 20,13 and 1,35 mg/kg for 0 mmol /kg EDTA; 58,61 and 113,24 mg/kg for 10 mmol/kg EDTA doses, respectively. On the other hand, Cd and Zn concentrations of experiment soil increased with EDTA application to the soil samples. Zinc and Cd concentrations of soil 0,31 and 0,021 mg/kg for 0 mmol /kg EDTA; 2,39 and 67,40 mg/kg for 10 mmol/kg EDTA doses, respectively. These increases were found to be statistically significant at the level of 1 %. According to the results of the pot experiment, some heavy metal especially Cd pollution of barley (Hordeum vulgare L.) plant province can be remediated by the phytoextraction method.
Keywords: Barley (Hordeum vulgare L.), Cadmium and Zinc, phytoextraction, soil pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684341 Effect of Copper Ions Doped-Hydroxyapatite 3D Fiber Scaffold
Authors: Adil Elrayah, Jie Weng, Esra Suliman
Abstract:
The mineral in human bone is not pure stoichiometric calcium phosphate (Ca/P) as it is partially substituted by in organic elements. In this study, the copper ions (Cu2+) substituted hydroxyapatite (CuHA) powder has been synthesized by the co-precipitation method. The CuHA powder has been used to fabricate CuHA fiber scaffolds by sol-gel process and the following sinter process. The resulted CuHA fibers have slightly different microstructure (i.e. porosity) compared to HA fiber scaffold, which is denser. The mechanical properties test was used to evaluate CuHA, and the results showed decreases in both compression strength and hardness tests. Moreover, the in vitro used endothelial cells to evaluate the angiogenesis of CuHA. The result illustrated that the viability of endothelial cell on CuHA fiber scaffold surfaces tends to antigenic behavior. The results obtained with CuHA scaffold give this material benefit in biological applications such as antimicrobial, antitumor, antigens, compacts, filling cavities of the tooth and for the deposition of metal implants anti-tumor, anti-cancer, bone filler, and scaffold.
Keywords: Fiber scaffold, copper ions, hydroxyapatite, hardness, in vitro, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698340 The Determination of the Potassium Nitrate, Sodium Hydroxide and Boric Acid Molar Ratio in the Synthesis of Potassium Borates via Hydrothermal Method
Authors: M. Yildirim, A. S. Kipcak, F. T. Senberber, M. O. Asensio, E. M. Derun, S. Piskin
Abstract:
Potassium borates, which are widely used in welding and metal refining industry, as a lubricating oil additive, cement additive, fiberglass additive and insulation compound, are one of the important groups of borate minerals. In this study the production of a potassium borate mineral via hydrothermal method is aimed. The potassium source of potassium nitrate (KNO3) was used along with a sodium source of sodium hydroxide (NaOH) and boron source of boric acid (H3BO3). The constant parameters of reaction temperature and reaction time were determined as 80°C and 1 h, respectively. The molar ratios of 1:1:3 (as KNO3:NaOH:H3BO3), 1:1:4, 1:1:5, 1:1:6 and 1:1:7 were used. Following the synthesis the identifications of the produced products were conducted by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectroscopy. The results of the experiments and analysis showed in the ratio of 1:1:6, the Santite mineral with powder diffraction file number (pdf no.) of 01-072-1688, which is known as potassium pentaborate (KB5O8·4H2O) was synthesized as best.Keywords: Hydrothermal synthesis, potassium borate, potassium nitrate, santite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308339 Li4SiO4 Prepared by Sol-gel Method as Potential Host for LISICON Structured Solid Electrolytes
Authors: Syed Bahari Ramadzan Syed Adnan, Nor Sabirin Mohamed, Norwati K.A
Abstract:
In this study, Li4SiO4 powder was successfully synthesized via sol gel method followed by drying at 150oC. Lithium oxide, Li2O and silicon oxide, SiO2 were used as the starting materials with citric acid as the chelating agent. The obtained powder was then sintered at various temperatures. Crystallographic phase analysis, morphology and ionic conductivity were investigated systematically employing X-ray diffraction, Fourier Transform Infrared, Scanning Electron Microscopy and AC impedance spectroscopy. XRD result showed the formation of pure monoclinic Li4SiO4 crystal structure with lattice parameters a = 5.140 Å, b = 6.094 Å, c = 5.293 Å, β = 90o in the sample sintered at 750oC. This observation was confirmed by FTIR analysis. The bulk conductivity of this sample at room temperature was 3.35 × 10-6 S cm-1 and the highest bulk conductivity of 1.16 × 10-4 S cm-1 was obtained at 100°C. The results indicated that, the Li4SiO4 compound has potential to be used as host for LISICON structured solid electrolyte for low temperature application.Keywords: Conductivity, LISICON, Li4SiO4, Solid electrolyte, Structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3320338 The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits
Authors: Violina R. Angelova, Sava G. Tabakov, Aleksander B. Peltekov, Krasimir I. Ivanov
Abstract:
A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on areas at a different distance from the source of pollution NFMW- Plovdiv (1 km, 3.5 km, and 15 km). The concentrations of macroelements, microelements, and heavy metals in Aronia fruits were determined. The dry matter content, ash, sugars, proteins, and fats were also determined. Aronia is a crop that is tolerant to heavy metals and can successfully be grown on soils contaminated with heavy metals. The increased content of heavy metals in the soil leads to less absorption of the nutrients (Ca, Mg and P) in the fruit of the Aronia. Soil pollution with heavy metals does not affect the quality of the Aronia fruit varieties.
Keywords: Aronia, chemical composition, fruits, quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1133337 An Overview on Aluminum Matrix Composites: Liquid State Processing
Authors: S. P. Jordan, G. Christian, S. P. Jeffs
Abstract:
Modern composite materials are increasingly being chosen in replacement of heavier metallic material systems within many engineering fields including aerospace and automotive industries. The increasing push towards satisfying environmental targets are fuelling new material technologies and manufacturing processes. This paper will introduce materials and manufacturing processes using metal matrix composites along with manufacturing processes optimized at Alvant Ltd., based in Basingstoke in the UK which offers modern, cost effective, selectively reinforced composites for light-weighting applications within engineering. An overview and introduction into modern optimized manufacturing methods capable of producing viable replacements for heavier metallic and lower temperature capable polymer composites are offered. A review of the capabilities and future applications of this viable material is discussed to highlight the potential involved in further optimization of old manufacturing techniques, to fully realize the potential to lightweight material using cost-effective methods.Keywords: Aluminum matrix composites, light-weighting, hybrid squeeze casting, strategically placed reinforcements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720336 Depletion Layer Parameters of Al-MoO3-P-CdTe-Al MOS Structures
Authors: A. C. Sarmah
Abstract:
The Al-MoO3-P-CdTe-Al MOS sandwich structures were fabricated by vacuum deposition method on cleaned glass substrates. Capacitance versus voltage measurements were performed at different frequencies and sweep rates of applied voltages for oxide and semiconductor films of different thicknesses. In the negative voltage region of the C-V curve a high differential capacitance of the semiconductor was observed and at high frequencies (<10 kHz) the transition from accumulation to depletion and further to deep depletion was observed as the voltage was swept from negative to positive. A study have been undertaken to determine the value of acceptor density and some depletion layer parameters such as depletion layer capacitance, depletion width, impurity concentration, flat band voltage, Debye length, flat band capacitance, diffusion or built-in-potential, space charge per unit area etc. These were determined from C-V measurements for different oxide and semiconductor thicknesses.
Keywords: Debye length, Depletion width, flat band capacitance, impurity concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569335 Hydraulic Studies on Core Components of PFBR
Authors: G. K. Pandey, D. Ramadasu, I. Banerjee, V. Vinod, G. Padmakumar, V. Prakash, K. K. Rajan
Abstract:
Detailed thermal hydraulic investigations are very essential for safe and reliable functioning of liquid metal cooled fast breeder reactors. These investigations are further more important for components with complex profile, since there is no direct correlation available in literature to evaluate the hydraulic characteristics of such components directly. In those cases available correlations for similar profile or geometries may lead to significant uncertainty in the outcome. Hence experimental approach can be adopted to evaluate these hydraulic characteristics more precisely for better prediction in reactor core components. Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool type reactor is under advanced stage of construction at Kalpakkam, India. Several components of this reactor core require hydraulic investigation before its usage in the reactor. These hydraulic investigations on full scale models, carried out by experimental approaches using water as simulant fluid are discussed in the paper.
Keywords: Fast Breeder Reactor, Cavitation, pressure drop, Reactor components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936334 Investigation of Silane Modified Ceramic Surface of Porous Mullite Ceramics
Authors: I. Markovska, F. Yovkova, G. Minov, D. Rusev, L. Lyubchev
Abstract:
The present research focus on the processing of mullite-based ceramics from oil refinery industrial wastes and byproducts of agricultural industry and on the investigating of silane modified surface of ceramics. Two waste products were used as initial material – waste aluminum oxide and waste rice husk. The burning - out additives used were waste rise husk. It is known that the oxide ceramics surface is hydrophilic due to the presence of – OH groups in it. The nature of ceramic surface regarding permeation of water and hydrocarbons can be changed by further treatment with silanes. The samples were studied mainly by X-ray analysis, FT-IR absorbance measurements and microscopic analysis. The X-ray analyses showed the phase composition depends on the firing temperature and on the purity of the starting alumina. Two kind of silanes were used for the transformation of surface from hydrophilic to hydrophobic – trimethoxymethylsilane (TMMS) and trimethylclorsilane (TMCS).
Keywords: Porous mullite ceramics, waste materials, trimethoxymethylsilane, trimethylclorsilane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483