Search results for: quad tree segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 707

Search results for: quad tree segmentation

107 Music-Inspired Harmony Search Algorithm for Fixed Outline Non-Slicing VLSI Floorplanning

Authors: K. Sivasubramanian, K. B. Jayanthi

Abstract:

Floorplanning plays a vital role in the physical design process of Very Large Scale Integrated (VLSI) chips. It is an essential design step to estimate the chip area prior to the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, many optimization techniques were adopted in the literature. In this work, a music-inspired Harmony Search (HS) algorithm is used for the fixed die outline constrained floorplanning, with the aim of reducing the total chip area. HS draws inspiration from the musical improvisation process of searching for a perfect state of harmony. Initially, B*-tree is used to generate the primary floorplan for the given rectangular hard modules and then HS algorithm is applied to obtain an optimal solution for the efficient floorplan. The experimental results of the HS algorithm are obtained for the MCNC benchmark circuits.

Keywords: Floor planning, harmony search, non-slicing floorplan, very large scale integrated circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
106 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
105 Use of Visualization Techniques for Active Learning Engagement in Environmental Science Engineering Courses

Authors: Srinivasan Latha, M. R. Christhu Raj, Rajeev Sukumaran

Abstract:

Active learning strategies have completely rewritten the concept of teaching and learning. Academicians have clocked back to Socratic approaches of questioning. Educators have started implementing active learning strategies for effective learning with the help of tools and technology. As Generation-Y learners are mostly visual, engaging them using visualization techniques play a vital role in their learning process. The facilitator has an important role in intrinsically motivating the learners using different approaches to create self-learning interests. Different visualization techniques were used along with lectures to help students understand and appreciate the concepts. Anonymous feedback was collected from learners. The consolidated report shows that majority of learners accepted the usage of visualization techniques was helpful in understanding concepts as well as create interest in learning the course. This study helps to understand, how the use of visualization techniques help the facilitator to engage learners effectively as well create and intrinsic motivation for their learning.

Keywords: Visualization techniques, concept maps, mind maps, argument maps, flowchart, tree diagram, problem solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
104 Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations

Authors: Marco Actis Grande, Somlak Wannarumon

Abstract:

This paper proposes the numerical simulation of the investment casting of gold jewelry. It aims to study the behavior of fluid flow during mould filling and solidification and to optimize the process parameters, which lead to predict and control casting defects such as gas porosity and shrinkage porosity. A finite difference method, computer simulation software FLOW-3D was used to simulate the jewelry casting process. The simplified model was designed for both numerical simulation and real casting production. A set of sensor acquisitions were allocated on the different positions of the wax tree of the model to detect filling times, while a set of thermocouples were allocated to detect the temperature during casting and cooling. Those detected data were applied to validate the results of the numerical simulation to the results of the real casting. The resulting comparisons signify that the numerical simulation can be used as an effective tool in investment-casting-process optimization and casting-defect prediction.

Keywords: Computer fluid dynamic, Investment casting, Jewelry, Mould filling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
103 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique

Authors: Hyun-Woo Cho

Abstract:

The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.

Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
102 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition

Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu

Abstract:

In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.

Keywords: Biometry, image processing, pattern recognition, speech analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
101 Development of Innovative Islamic Web Applications

Authors: Farrukh Shahzad

Abstract:

The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).

Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
100 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281
99 Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection

Authors: Ehsan Amid, Sina Rezaei Aghdam, Hamidreza Amindavar

Abstract:

Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the "one-againstone" method and different kernels are utilized for each pair of the classes in multiclass classification of the different defects. In the proposed system, a decision tree is employed in the first stage for two-class classification of the steel surfaces to "defect" and "non-defect", in order to decrease the time complexity. Based on the experimental results, generated from over one thousand images, the proposed multiclass classification scheme is more accurate than the conventional methods and the overall system yields a sufficient performance which can meet the requirements in steel manufacturing.

Keywords: Steel Surface Defect Detection, Support Vector Machines, Kernel Methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
98 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review

Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen

Abstract:

The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.

Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
97 Variable Rate Superorthogonal Turbo Code with the OVSF Code Tree

Authors: Insah Bhurtah, P. Clarel Catherine, K. M. Sunjiv Soyjaudah

Abstract:

When using modern Code Division Multiple Access (CDMA) in mobile communications, the user must be able to vary the transmission rate of users to allocate bandwidth efficiently. In this work, Orthogonal Variable Spreading Factor (OVSF) codes are used with the same principles applied in a low-rate superorthogonal turbo code due to their variable-length properties. The introduced system is the Variable Rate Superorthogonal Turbo Code (VRSTC) where puncturing is not performed on the encoder’s final output but rather before selecting the output to achieve higher rates. Due to bandwidth expansion, the codes outperform an ordinary turbo code in the AWGN channel. Simulations results show decreased performance compared to those obtained with the employment of Walsh-Hadamard codes. However, with OVSF codes, the VRSTC system keeps the orthogonality of codewords whilst producing variable rate codes contrary to Walsh-Hadamard codes where puncturing is usually performed on the final output.

Keywords: CDMA, MAP Decoding, OVSF, Superorthogonal Turbo Code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
96 A Robust Salient Region Extraction Based on Color and Texture Features

Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen

Abstract:

In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.

Keywords: salient regions, color and texture features, image segmentation, saliency metric

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
95 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: Cross-validation, decision tree, lagged variables, short-term forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
94 Customer Segmentation Model in E-commerce Using Clustering Techniques and LRFM Model: The Case of Online Stores in Morocco

Authors: Rachid Ait daoud, Abdellah Amine, Belaid Bouikhalene, Rachid Lbibb

Abstract:

Given the increase in the number of e-commerce sites, the number of competitors has become very important. This means that companies have to take appropriate decisions in order to meet the expectations of their customers and satisfy their needs. In this paper, we present a case study of applying LRFM (length, recency, frequency and monetary) model and clustering techniques in the sector of electronic commerce with a view to evaluating customers’ values of the Moroccan e-commerce websites and then developing effective marketing strategies. To achieve these objectives, we adopt LRFM model by applying a two-stage clustering method. In the first stage, the self-organizing maps method is used to determine the best number of clusters and the initial centroid. In the second stage, kmeans method is applied to segment 730 customers into nine clusters according to their L, R, F and M values. The results show that the cluster 6 is the most important cluster because the average values of L, R, F and M are higher than the overall average value. In addition, this study has considered another variable that describes the mode of payment used by customers to improve and strengthen clusters’ analysis. The clusters’ analysis demonstrates that the payment method is one of the key indicators of a new index which allows to assess the level of customers’ confidence in the company's Website.

Keywords: Customer value, LRFM model, Cluster analysis, Self-Organizing Maps method (SOM), K-means algorithm, loyalty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6253
93 Classification of Political Affiliations by Reduced Number of Features

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.

Keywords: Politics, machine learning, feature selection, LIWC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
92 Impact Assessment of Air Pollution Stress on Plant Species through Biochemical Estimations

Authors: Govindaraju.M, Ganeshkumar.R.S, Suganthi.P, Muthukumaran.V.R, Visvanathan.P

Abstract:

The present study was conducted to investigate the response of plants exposed to lignite-based thermal power plant emission. For this purpose, five plant species were collected from 1.0 km distance (polluted site) and control plants were collected from 20.0 km distance (control site) to thermal power plant. The common tree species Cassia siamea Lamk., Polyalthia longifolia. Sonn, Acacia longifolia (Andrews) Wild., Azadirachta indica A.Juss, Ficus religiosa L. were selected as test plants. Photosynthetic pigments changes (chlorophyll a, chlorophyll b and carotenoids) and rubisco enzyme modifications were studied. Reduction was observed in the photosynthetic pigments of plants growing in polluted site and also large sub unit of the rubisco enzyme was degraded in Azadirachta indica A. Juss collected from polluted site.

Keywords: Air pollution, Lignite-based thermal power plant, Photosynthetic pigments, Rubisco enzyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3185
91 Antibacterial and Antifungal Activity of Essential Oil of Eucalyptus camendulensis on a Few Bacteria and Fungi

Authors: M. Mehani, N. Salhi, T. Valeria, S. Ladjel

Abstract:

Red River Gum (Eucalyptus camaldulensis) is a tree of the genus Eucalyptus widely distributed in Algeria and in the world. The value of its aromatic secondary metabolites offers new perspectives in the pharmaceutical industry. This strategy can contribute to the sustainable development of our country. Preliminary tests performed on the essential oil of Eucalyptus camendulensis showed that this oil has antibacterial activity vis-à-vis the bacterial strains (Enterococcus feacalis, Enterobacter cloaceai, Proteus microsilis, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) and antifungic (Fusarium sporotrichioide and Fusarium graminearum). The culture medium used was nutrient broth Muller Hinton. The interaction between the bacteria and the essential oil is expressed by a zone of inhibition with diameters of MIC indirectly expression of. And we used the PDA medium to determine the fungal activity. The extraction of the aromatic fraction (essentially oilhydrolat) of the fresh aerian part of the Eucalyptus camendulensis was performed by hydrodistillation. The average essential oil yield is 0.99%. The antimicrobial and fungal study of the essential oil and hydrosol showed a high inhibitory effect on the growth of pathogens.

Keywords: Essential oil, Eucalyptus camendulensis, bacteria and Fungi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
90 Decision Trees for Predicting Risk of Mortality using Routinely Collected Data

Authors: Tessy Badriyah, Jim S. Briggs, Dave R. Prytherch

Abstract:

It is well known that Logistic Regression is the gold standard method for predicting clinical outcome, especially predicting risk of mortality. In this paper, the Decision Tree method has been proposed to solve specific problems that commonly use Logistic Regression as a solution. The Biochemistry and Haematology Outcome Model (BHOM) dataset obtained from Portsmouth NHS Hospital from 1 January to 31 December 2001 was divided into four subsets. One subset of training data was used to generate a model, and the model obtained was then applied to three testing datasets. The performance of each model from both methods was then compared using calibration (the χ2 test or chi-test) and discrimination (area under ROC curve or c-index). The experiment presented that both methods have reasonable results in the case of the c-index. However, in some cases the calibration value (χ2) obtained quite a high result. After conducting experiments and investigating the advantages and disadvantages of each method, we can conclude that Decision Trees can be seen as a worthy alternative to Logistic Regression in the area of Data Mining.

Keywords: Decision Trees, Logistic Regression, clinical outcome, risk of mortality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
89 Search for Flavour Changing Neutral Current Couplings of Higgs-up Sector Quarks at Future Circular Collider (FCC-eh)

Authors: I. Turk Cakir, B. Hacisahinoglu, S. Kartal, A. Yilmaz, A. Yilmaz, Z. Uysal, O. Cakir

Abstract:

In the search for new physics beyond the Standard Model, Flavour Changing Neutral Current (FCNC) is a good research field in terms of the observability at future colliders. Increased Higgs production with higher energy and luminosity in colliders is essential for verification or falsification of our knowledge of physics and predictions, and the search for new physics. Prospective electron-proton collider constituent of the Future Circular Collider project is FCC-eh. It offers great sensitivity due to its high luminosity and low interference. In this work, thq FCNC interaction vertex with off-shell top quark decay at electron-proton colliders is studied. By using MadGraph5_aMC@NLO multi-purpose event generator, observability of tuh and tch couplings are obtained with equal coupling scenario. Upper limit on branching ratio of tree level top quark FCNC decay is determined as 0.012% at FCC-eh with 1 ab ^−1 luminosity.

Keywords: FCC, FCNC, Higgs Boson, Top Quark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
88 Analysis of Genetic Variations in Camel Breeds (Camelus dromedarius)

Authors: Yasser M. Saad, Amr A. El Hanafy, Saleh A. Alkarim, Hussein A. Almehdar, Elrashdy M. Redwan

Abstract:

Camels are substantial providers of transport, milk, sport, meat, shelter, security and capital in many countries, particularly in Saudi Arabia. Inter simple sequence repeat technique was used to detect the genetic variations among some camel breeds (Majaheim, Safra, Wadah, and Hamara). Actual number of alleles, effective number of alleles, gene diversity, Shannon’s information index and polymorphic bands were calculated for each evaluated camel breed. Neighbor-joining tree that re-constructed for evaluated these camel breeds showed that, Hamara breed is distantly related from the other evaluated camels. In addition, the polymorphic sites, haplotypes and nucleotide diversity were identified for some camelidae cox1 gene sequences (obtained from NCBI). The distance value between C. bactrianus and C. dromedarius (0.072) was relatively low. Analysis of genetic diversity is an important way for conserving Camelus dromedarius genetic resources.

Keywords: Camel, genetics, ISSR, cox1, neighbor-joining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
87 Textile Dyeing with Natural Dye from Sappan Tree (Caesalpinia sappan Linn.) Extract

Authors: Ploysai Ohama, Nattida Tumpat

Abstract:

Natural dye extracted from Caesalpinia sappan Linn. was applied to a cotton fabric and silk yarn by dyeing process. The dyestuff component of Caesalpinia sappan Linn. was extracted using water and ethanol. Analytical studies such as UV–VIS spectrophotometry and gravimetric analysis were performed on the extracts. Brazilein, the major dyestuff component of Caesalpinia sappan Linn. was confirmed in both aqueous and ethanolic extracts by UV–VIS spectrum. The color of each dyed material was investigated in terms of the CIELAB (L*, a* and b*) and K/S values. Cotton fabric dyed without mordant had a shade of reddish-brown, while those post-mordanted with aluminum potassium sulfate, ferrous sulfate and copper sulfate produced a variety of wine red to dark purple color shades. Cotton fabric and silk yarn dyeing was studied using aluminum potassium sulfate as a mordant. The observed color strength was enhanced with increase in mordant concentration.

Keywords: Natural dyes, Plant materials, Dyeing, Mordant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5072
86 Object Identification with Color, Texture, and Object-Correlation in CBIR System

Authors: Awais Adnan, Muhammad Nawaz, Sajid Anwar, Tamleek Ali, Muhammad Ali

Abstract:

Needs of an efficient information retrieval in recent years in increased more then ever because of the frequent use of digital information in our life. We see a lot of work in the area of textual information but in multimedia information, we cannot find much progress. In text based information, new technology of data mining and data marts are now in working that were started from the basic concept of database some where in 1960. In image search and especially in image identification, computerized system at very initial stages. Even in the area of image search we cannot see much progress as in the case of text based search techniques. One main reason for this is the wide spread roots of image search where many area like artificial intelligence, statistics, image processing, pattern recognition play their role. Even human psychology and perception and cultural diversity also have their share for the design of a good and efficient image recognition and retrieval system. A new object based search technique is presented in this paper where object in the image are identified on the basis of their geometrical shapes and other features like color and texture where object-co-relation augments this search process. To be more focused on objects identification, simple images are selected for the work to reduce the role of segmentation in overall process however same technique can also be applied for other images.

Keywords: Object correlation, Geometrical shape, Color, texture, features, contents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
85 Target Detection using Adaptive Progressive Thresholding Based Shifted Phase-Encoded Fringe-Adjusted Joint Transform Correlator

Authors: Inder K. Purohit, M. Nazrul Islam, K. Vijayan Asari, Mohammad A. Karim

Abstract:

A new target detection technique is presented in this paper for the identification of small boats in coastal surveillance. The proposed technique employs an adaptive progressive thresholding (APT) scheme to first process the given input scene to separate any objects present in the scene from the background. The preprocessing step results in an image having only the foreground objects, such as boats, trees and other cluttered regions, and hence reduces the search region for the correlation step significantly. The processed image is then fed to the shifted phase-encoded fringe-adjusted joint transform correlator (SPFJTC) technique which produces single and delta-like correlation peak for a potential target present in the input scene. A post-processing step involves using a peak-to-clutter ratio (PCR) to determine whether the boat in the input scene is authorized or unauthorized. Simulation results are presented to show that the proposed technique can successfully determine the presence of an authorized boat and identify any intruding boat present in the given input scene.

Keywords: Adaptive progressive thresholding, fringe adjusted filters, image segmentation, joint transform correlation, synthetic discriminant function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208
84 Site Selection of Traffic Camera based on Dempster-Shafer and Bagging Theory

Authors: S. Rokhsari, M. Delavar, A. Sadeghi-Niaraki, A. Abed-Elmdoust, B. Moshiri

Abstract:

Traffic incident has bad effect on all parts of society so controlling road networks with enough traffic devices could help to decrease number of accidents, so using the best method for optimum site selection of these devices could help to implement good monitoring system. This paper has considered here important criteria for optimum site selection of traffic camera based on aggregation methods such as Bagging and Dempster-Shafer concepts. In the first step, important criteria such as annual traffic flow, distance from critical places such as parks that need more traffic controlling were identified for selection of important road links for traffic camera installation, Then classification methods such as Artificial neural network and Decision tree algorithms were employed for classification of road links based on their importance for camera installation. Then for improving the result of classifiers aggregation methods such as Bagging and Dempster-Shafer theories were used.

Keywords: Aggregation, Bagging theory, Dempster-Shafer theory, Site selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
83 Molecular Characterization of Free Radicals Decomposing Genes on Plant Developmental Stages

Authors: R. Haddad, K. Morris, V. Buchanan-Wollaston

Abstract:

Biochemical and molecular analysis of some antioxidant enzyme genes revealed different level of gene expression on oilseed (Brassica napus). For molecular and biochemical analysis, leaf tissues were harvested from plants at eight different developmental stages, from young to senescence. The levels of total protein and chlorophyll were increased during maturity stages of plant, while these were decreased during the last stages of plant growth. Structural analysis (nucleotide and deduced amino acid sequence, and phylogenic tree) of a complementary DNA revealed a high level of similarity for a family of Catalase genes. The expression of the gene encoded by different Catalase isoforms was assessed during different plant growth phase. No significant difference between samples was observed, when Catalase activity was statistically analyzed at different developmental stages. EST analysis exhibited different transcripts levels for a number of other relevant antioxidant genes (different isoforms of SOD and glutathione). The high level of transcription of these genes at senescence stages was indicated that these genes are senescenceinduced genes.

Keywords: Biochemical analysis, Oilseed, Expression pattern, Growth phases

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
82 A Consistency Protocol Multi-Layer for Replicas Management in Large Scale Systems

Authors: Ghalem Belalem, Yahya Slimani

Abstract:

Large scale systems such as computational Grid is a distributed computing infrastructure that can provide globally available network resources. The evolution of information processing systems in Data Grid is characterized by a strong decentralization of data in several fields whose objective is to ensure the availability and the reliability of the data in the reason to provide a fault tolerance and scalability, which cannot be possible only with the use of the techniques of replication. Unfortunately the use of these techniques has a height cost, because it is necessary to maintain consistency between the distributed data. Nevertheless, to agree to live with certain imperfections can improve the performance of the system by improving competition. In this paper, we propose a multi-layer protocol combining the pessimistic and optimistic approaches conceived for the data consistency maintenance in large scale systems. Our approach is based on a hierarchical representation model with tree layers, whose objective is with double vocation, because it initially makes it possible to reduce response times compared to completely pessimistic approach and it the second time to improve the quality of service compared to an optimistic approach.

Keywords: Data Grid, replication, consistency, optimistic approach, pessimistic approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
81 Feasibility of Integrating Heating Valve Drivers with KNX-standard for Performing Dynamic Hydraulic Balance in Domestic Buildings

Authors: Tobias Teich, Danny Szendrei, Markus Schrader, Franziska Jahn, Susan Franke

Abstract:

The increasing demand for sufficient and clean energy forces industrial and service companies to align their strategies towards efficient consumption. This trend refers also to the residential building sector. There, large amounts of energy consumption are caused by house and facility heating. Many of the operated hot water heating systems lack hydraulic balanced working conditions for heat distribution and –transmission and lead to inefficient heating. Through hydraulic balancing of heating systems, significant energy savings for primary and secondary energy can be achieved. This paper addresses the use of KNX-technology (Smart Buildings) in residential buildings to ensure a dynamic adaption of hydraulic system's performance, in order to increase the heating system's efficiency. In this paper, the procedure of heating system segmentation into hydraulically independent units (meshes) is presented. Within these meshes, the heating valve are addressed and controlled by a central facility server. Feasibility criteria towards such drivers will be named. The dynamic hydraulic balance is achieved by positioning these valves according to heating loads, that are generated from the temperature settings in the corresponding rooms. The energetic advantages of single room heating control procedures, based on the application FacilityManager, is presented.

Keywords: building automation, dynamic hydraulic balance, energy savings, VPN-networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
80 Developing Rice Disease Analysis System on Mobile via iOS Operating System

Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit

Abstract:

This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.

Keywords: Rice disease, analysis system, mobile application, iOS operating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
79 TBC for Protection of Al Alloy Aerospace Component

Authors: P. Niranatlumpong, H. Koiprasert, C. Sukhonket, K. Ninon, N. Coompreedee

Abstract:

The use of a conventional air plasma-sprayed thermal barrier coating (TBC) and a porous, functionally graded TBC as a thermal insulator for Al7075 alloy was explored. A quench test at 1200°C employing fast heating and cooling rates was setup to represent a dynamic thermal condition of an aerospace component. During the test, coated samples were subjected the ambient temperature of 1200°C for a very short time. This was followed by a rapid drop in temperature resulting in cracking of the coatings. For the conventional TBC, it was found that the temperature of the Al7075 substrate decreases with the increase in the ZrO2 topcoat thickness. However, at the topcoat thickness of 1100 µm, large horizontal cracks can be observed in the topcoat and at the topcoat thickness of 1600 µm, the topcoat delaminate during cooling after the quench test. The porous, functionally graded TBC with 600 µm thick topcoat, on the other hand, was found to be as effective at reducing the substrate temperature as the conventional TBC with 1100 µm thick topcoat. The maximum substrate temperature is about 213°C for the former and 208°C for the latter when a heating rate of 38°C/s was used. When the quench tests were conducted with a faster heating rate of 128°C/s, the Al7075 substrate heat up faster with a reduction in the maximum substrate temperatures. The substrate temperatures dropped from 297 to 212°C for the conventional TBC and from 213 to 155°C for the porous TBC, both with 600 µm thick topcoat. Segmentation cracks were observed in both coating after the quench test.

Keywords: Thermal barrier coating, Al7075, porous TBC, Quenching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
78 Using A Hybrid Algorithm to Improve the Quality of Services in Multicast Routing Problem

Authors: Mohammad Reza Karami Nejad

Abstract:

A hybrid learning automata-genetic algorithm (HLGA) is proposed to solve QoS routing optimization problem of next generation networks. The algorithm complements the advantages of the learning Automato Algorithm(LA) and Genetic Algorithm(GA). It firstly uses the good global search capability of LA to generate initial population needed by GA, then it uses GA to improve the Quality of Service(QoS) and acquiring the optimization tree through new algorithms for crossover and mutation operators which are an NP-Complete problem. In the proposed algorithm, the connectivity matrix of edges is used for genotype representation. Some novel heuristics are also proposed for mutation, crossover, and creation of random individuals. We evaluate the performance and efficiency of the proposed HLGA-based algorithm in comparison with other existing heuristic and GA-based algorithms by the result of simulation. Simulation results demonstrate that this paper proposed algorithm not only has the fast calculating speed and high accuracy but also can improve the efficiency in Next Generation Networks QoS routing. The proposed algorithm has overcome all of the previous algorithms in the literature.

Keywords: Routing, Quality of Service, Multicaset, Learning Automata, Genetic, Next Generation Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738