Search results for: Sugeno fuzzy logic inference.
673 Application of Intuitionistic Fuzzy Cross Entropy Measure in Decision Making for Medical Diagnosis
Authors: Shikha Maheshwari, Amit Srivastava
Abstract:
In medical investigations, uncertainty is a major challenging problem in making decision for doctors/experts to identify the diseases with a common set of symptoms and also has been extensively increasing in medical diagnosis problems. The theory of cross entropy for intuitionistic fuzzy sets (IFS) is an effective approach in coping uncertainty in decision making for medical diagnosis problem. The main focus of this paper is to propose a new intuitionistic fuzzy cross entropy measure (IFCEM), which aid in reducing the uncertainty and doctors/experts will take their decision easily in context of patient’s disease. It is shown that the proposed measure has some elegant properties, which demonstrates its potency. Further, it is also exemplified in detail the efficiency and utility of the proposed measure by using a real life case study of diagnosis the disease in medical science.
Keywords: Intuitionistic fuzzy cross entropy (IFCEM), intuitionistic fuzzy set (IFS), medical diagnosis, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045672 Reliability Analysis of k-out-of-n : G System Using Triangular Intuitionistic Fuzzy Numbers
Authors: Tanuj Kumar, Rakesh Kumar Bajaj
Abstract:
In the present paper, we analyze the vague reliability of k-out-of-n : G system (particularly, series and parallel system) with independent and non-identically distributed components, where the reliability of the components are unknown. The reliability of each component has been estimated using statistical confidence interval approach. Then we converted these statistical confidence interval into triangular intuitionistic fuzzy numbers. Based on these triangular intuitionistic fuzzy numbers, the reliability of the k-out-of-n : G system has been calculated. Further, in order to implement the proposed methodology and to analyze the results of k-out-of-n : G system, a numerical example has been provided.
Keywords: Vague set, vague reliability, triangular intuitionistic fuzzy number, k-out-of-n : G system, series and parallel system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2981671 Improved C-Fuzzy Decision Tree for Intrusion Detection
Authors: Krishnamoorthi Makkithaya, N. V. Subba Reddy, U. Dinesh Acharya
Abstract:
As the number of networked computers grows, intrusion detection is an essential component in keeping networks secure. Various approaches for intrusion detection are currently being in use with each one has its own merits and demerits. This paper presents our work to test and improve the performance of a new class of decision tree c-fuzzy decision tree to detect intrusion. The work also includes identifying best candidate feature sub set to build the efficient c-fuzzy decision tree based Intrusion Detection System (IDS). We investigated the usefulness of c-fuzzy decision tree for developing IDS with a data partition based on horizontal fragmentation. Empirical results indicate the usefulness of our approach in developing the efficient IDS.Keywords: Data mining, Decision tree, Feature selection, Fuzzyc- means clustering, Intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577670 Strict Stability of Fuzzy Differential Equations with Impulse Effect
Authors: Sanjay K.Srivastava, Bhanu Gupta
Abstract:
In this paper some results on strict stability heve beeb extended for fuzzy differential equations with impulse effect using Lyapunov functions and Razumikhin technique.
Keywords: Fuzzy differential equations, Impulsive differential equations, Strict stability, Lyapunov function, Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469669 Design and Implementation of a Fan Coil Unit Controller Based on the Duty Ratio Fuzzy Method
Authors: Liang Zhao, Jili Zhang, Kai Li
Abstract:
A microcontroller-based fan coil unit (FCU) fuzzy controller is designed and implemented in this paper. The controller employs the concept of duty ratio on the electric valve control, which could make full use of the cooling and dehumidifying capacity of the FCU when the valve is off. The traditional control method and its limitations are analyzed. The hardware and software design processes are introduced in detail. The experimental results show that the proposed method is more energy efficient compared to the traditional controlling strategy. Furthermore, a more comfortable room condition could be achieved by the proposed method. The proposed low-cost FCU fuzzy controller deserves to be widely used in engineering applications.Keywords: Fan coil unit, duty ratio, fuzzy controller, experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803668 Mutation Rate for Evolvable Hardware
Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert
Abstract:
Evolvable hardware (EHW) refers to a selfreconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). A lot of research has been done in this area several different EA have been introduced. Every time a specific EA is chosen for solving a particular problem, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade a lot of research has been carried out in order to identify the best parameters for the EA-s components for different “test-problems". However different researchers propose different solutions. In this paper the behaviour of mutation rate on (1+λ) evolution strategy (ES) for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies values of the logic cell inputs, the cell type (for example from AND to NOR) and the circuit output. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates used for the evolved circuits. The experimental results found provide the behaviour of the mutation rate to be used during evolution for the design and optimization of logic circuits. The researches on the best mutation rate during the last 40 years are also summarized.Keywords: Evolvable hardware, mutation rate, evolutionarycomputation, design of logic circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501667 DEMO Based Optimal Power Purchase Planning Under Electricity Price Uncertainty
Authors: Tulika Bhattacharjee, A. K.Chakraborty
Abstract:
Due to the deregulation of the Electric Supply Industry and the resulting emergence of electricity market, the volumes of power purchases are on the rise all over the world. In a bid to meet the customer-s demand in a reliable and yet economic manner, utilities purchase power from the energy market over and above its own production. This paper aims at developing an optimal power purchase model with two objectives viz economy and environment ,taking various functional operating constraints such as branch flow limits, load bus voltage magnitudes limits, unit capacity constraints and security constraints into consideration.The price of purchased power being an uncertain variable is modeled using fuzzy logic. DEMO (Differential Evolution For Multi-objective Optimization) is used to obtain the pareto-optimal solution set of the multi-objective problem formulated. Fuzzy set theory has been employed to extract the best compromise non-dominated solution. The results obtained on IEEE 30 bus system are presented and compared with that of NSGAII.Keywords: Deregulation, Differential Evolution, Multi objective Optimization, Pareto Optimal Set, Optimal Power Flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506666 Order Penetration Point Location using Fuzzy Quadratic Programming
Authors: Hamed Rafiei, Masoud Rabbani
Abstract:
This paper addresses one of the most important issues have been considered in hybrid MTS/MTO production environments. To cope with the problem, a mathematical programming model is applied from a tactical point of view. The model is converted to a fuzzy goal programming model, because a degree of uncertainty is involved in hybrid MTS/MTO context. Finally, application of the proposed model in an industrial center is reported and the results prove the validity of the model.Keywords: Fuzzy sets theory, Hybrid MTS/MTO, Order penetration point, Quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600665 The Leaves of a Tree
Authors: Zhu Jiaming, Yu Mengna
Abstract:
In this article, models based on quantitative analysis, physical geometry and regression analysis are established, by using analytic hierarchy process analysis, fuzzy cluster analysis, fuzzy photographic and data fitting. The reasons of various leaf shapes among different species and the differences between the leaf shapes on same tree have been solved by using software, such as Eviews, VB and Matlab. We also successfully estimate the leaf mass of a tree and the correlation with the tree profile.Keywords: Leaf shape; Mass; Fuzzy cluster; Regression analysis; Eviews; Matlab
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597664 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering
Authors: Elizabeth B. Varghese, M. Wilscy
Abstract:
A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.
Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241663 Project Selection by Using a Fuzzy TOPSIS Technique
Authors: M. Salehi, R. Tavakkoli-Moghaddam
Abstract:
Selection of a project among a set of possible alternatives is a difficult task that the decision maker (DM) has to face. In this paper, by using a fuzzy TOPSIS technique we propose a new method for a project selection problem. After reviewing four common methods of comparing investment alternatives (net present value, rate of return, benefit cost analysis and payback period) we use them as criteria in a TOPSIS technique. First we calculate the weight of each criterion by a pairwise comparison and then we utilize the improved TOPSIS assessment for the project selection.Keywords: Fuzzy Theory, Pairwise Comparison, ProjectSelection, TOPSIS Technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639662 Active Segment Selection Method in EEG Classification Using Fractal Features
Authors: Samira Vafaye Eslahi
Abstract:
BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.
Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120661 A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering
Authors: Emrah Bulut, Okan Duru, Shigeru Yoshida
Abstract:
In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but also with the conventional time series methods such as the classical vector autoregressive model. The cluster optimization is based on the C-means clustering method. An empirical study is performed for the prediction of the chartering rates of a group of dry bulk cargo ships. The root mean squared error (RMSE) metric is used for the comparing of results of methods and the proposed method has superiority than both traditional FTS methods and also the classical time series methods.
Keywords: C-means clustering, Fuzzy time series, Multi-variate design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300660 Database Modelling Using WSML in the Specification of a Banking Application
Authors: Omid Sharifi, Member, ACM, Zeki Bayram, Member, ACM
Abstract:
We demonstrate through a sample application, Ebanking, that the Web Service Modelling Language Ontology component can be used as a very powerful object-oriented database design language with logic capabilities. Its conceptual syntax allows the definition of class hierarchies, and logic syntax allows the definition of constraints in the database. Relations, which are available for modelling relations of three or more concepts, can be connected to logical expressions, allowing the implicit specification of database content. Using a reasoning tool, logic queries can also be made against the database in simulation mode.Keywords: Semantic web, ontology, E-banking, database, WSML, WSMO, E-R diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940659 Fuzzy Predictive Pursuit Guidance in the Homing Missiles
Authors: Mustafa Resa Becan, Ahmet Kuzucu
Abstract:
A fuzzy predictive pursuit guidance is proposed as an alternative to the conventional methods. The purpose of this scheme is to obtain a stable and fast guidance. The noise effects must be reduced in homing missile guidance to get an accurate control. An aerodynamic missile model is simulated first and a fuzzy predictive pursuit control algorithm is applied to reduce the noise effects. The performance of this algorithm is compared with the performance of the classical proportional derivative control. Stability analysis of the proposed guidance method is performed and compared with the stability properties of other guidance methods. Simulation results show that the proposed method provides the satisfying performance.Keywords: Fuzzy, noise effect, predictive, pursuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889658 Sensory Evaluation of the Selected Coffee Products Using Fuzzy Approach
Authors: M.A. Lazim, M. Suriani
Abstract:
Knowing consumers' preferences and perceptions of the sensory evaluation of drink products are very significant to manufacturers and retailers alike. With no appropriate sensory analysis, there is a high risk of market disappointment. This paper aims to rank the selected coffee products and also to determine the best of quality attribute through sensory evaluation using fuzzy decision making model. Three products of coffee drinks were used for sensory evaluation. Data were collected from thirty judges at a hypermarket in Kuala Terengganu, Malaysia. The judges were asked to specify their sensory evaluation in linguistic terms of the quality attributes of colour, smell, taste and mouth feel for each product and also the weight of each quality attribute. Five fuzzy linguistic terms represent the quality attributes were introduced prior analysing. The judgment membership function and the weights were compared to rank the products and also to determine the best quality attribute. The product of Indoc was judged as the first in ranking and 'taste' as the best quality attribute. These implicate the importance of sensory evaluation in identifying consumers- preferences and also the competency of fuzzy approach in decision making.Keywords: fuzzy decision making, fuzzy linguistic, membership function, sensory evaluation,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2780657 Security Analysis of Password Hardened Multimodal Biometric Fuzzy Vault
Authors: V. S. Meenakshi, G. Padmavathi
Abstract:
Biometric techniques are gaining importance for personal authentication and identification as compared to the traditional authentication methods. Biometric templates are vulnerable to variety of attacks due to their inherent nature. When a person-s biometric is compromised his identity is lost. In contrast to password, biometric is not revocable. Therefore, providing security to the stored biometric template is very crucial. Crypto biometric systems are authentication systems, which blends the idea of cryptography and biometrics. Fuzzy vault is a proven crypto biometric construct which is used to secure the biometric templates. However fuzzy vault suffer from certain limitations like nonrevocability, cross matching. Security of the fuzzy vault is affected by the non-uniform nature of the biometric data. Fuzzy vault when hardened with password overcomes these limitations. Password provides an additional layer of security and enhances user privacy. Retina has certain advantages over other biometric traits. Retinal scans are used in high-end security applications like access control to areas or rooms in military installations, power plants, and other high risk security areas. This work applies the idea of fuzzy vault for retinal biometric template. Multimodal biometric system performance is well compared to single modal biometric systems. The proposed multi modal biometric fuzzy vault includes combined feature points from retina and fingerprint. The combined vault is hardened with user password for achieving high level of security. The security of the combined vault is measured using min-entropy. The proposed password hardened multi biometric fuzzy vault is robust towards stored biometric template attacks.Keywords: Biometric Template Security, Crypto Biometric Systems, Hardening Fuzzy Vault, Min-Entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160656 Fuzzy Relatives of the CLARANS Algorithm With Application to Text Clustering
Authors: Mohamed A. Mahfouz, M. A. Ismail
Abstract:
This paper introduces new algorithms (Fuzzy relative of the CLARANS algorithm FCLARANS and Fuzzy c Medoids based on randomized search FCMRANS) for fuzzy clustering of relational data. Unlike existing fuzzy c-medoids algorithm (FCMdd) in which the within cluster dissimilarity of each cluster is minimized in each iteration by recomputing new medoids given current memberships, FCLARANS minimizes the same objective function minimized by FCMdd by changing current medoids in such away that that the sum of the within cluster dissimilarities is minimized. Computing new medoids may be effected by noise because outliers may join the computation of medoids while the choice of medoids in FCLARANS is dictated by the location of a predominant fraction of points inside a cluster and, therefore, it is less sensitive to the presence of outliers. In FCMRANS the step of computing new medoids in FCMdd is modified to be based on randomized search. Furthermore, a new initialization procedure is developed that add randomness to the initialization procedure used with FCMdd. Both FCLARANS and FCMRANS are compared with the robust and linearized version of fuzzy c-medoids (RFCMdd). Experimental results with different samples of the Reuter-21578, Newsgroups (20NG) and generated datasets with noise show that FCLARANS is more robust than both RFCMdd and FCMRANS. Finally, both FCMRANS and FCLARANS are more efficient and their outputs are almost the same as that of RFCMdd in terms of classification rate.Keywords: Data Mining, Fuzzy Clustering, Relational Clustering, Medoid-Based Clustering, Cluster Analysis, Unsupervised Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402655 Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection
Authors: Sri Hartati, 1Agus Harjoko, Brad G. Nickerson
Abstract:
A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.Keywords: Image processing, artificial neural network, anomaly detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113654 Fuzzy Approach for Ranking of Motor Vehicles Involved in Road Accidents
Authors: Lazim Abdullah, N orhanadiah Zam
Abstract:
Increasing number of vehicles and lack of awareness among road users may lead to road accidents. However no specific literature was found to rank vehicles involved in accidents based on fuzzy variables of road users. This paper proposes a ranking of four selected motor vehicles involved in road accidents. Human and non-human factors that normally linked with road accidents are considered for ranking. The imprecision or vagueness inherent in the subjective assessment of the experts has led the application of fuzzy sets theory to deal with ranking problems. Data in form of linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. The Multi Criteria Decision Making, fuzzy TOPSIS was applied in computational procedures. From the analysis, it shows that motorcycles vehicles yielded the highest closeness coefficient at 0.6225. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the motorcycles recorded the first rank.
Keywords: Road accidents, decision making, closeness coefficient, fuzzy number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541653 Stability Analysis of Impulsive Stochastic Fuzzy Cellular Neural Networks with Time-varying Delays and Reaction-diffusion Terms
Authors: Xinhua Zhang, Kelin Li
Abstract:
In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy neural networks with timevarying delays and reaction-diffusion is considered. By utilizing suitable Lyapunov-Krasovskii funcational, the inequality technique and stochastic analysis technique, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive stochastic fuzzy cellular neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of fuzzy neural networks. An example is given to show the effectiveness of the obtained results.
Keywords: Exponential stability, stochastic fuzzy cellular neural networks, time-varying delays, impulses, reaction-diffusion terms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382652 Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects
Authors: Preeda Sansakorn, Min An
Abstract:
In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes.
Keywords: Safety risks assessment, building construction safety, fuzzy reasoning, construction risk assessment model, building construction projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345651 Solution of Fuzzy Differential Equation under Generalized Differentiability by Genetic Programming
Authors: N. Kumaresan, J. Kavikumar, M. Kumudthaa, Kuru Ratnavelu
Abstract:
In this paper, solution of fuzzy differential equation under general differentiability is obtained by genetic programming (GP). The obtained solution in this method is equivalent or very close to the exact solution of the problem. Accuracy of the solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.Keywords: Fuzzy differential equation, Generalized differentiability, Genetic programming and H-difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244650 A Single-Period Inventory Problem with Resalable Returns: A Fuzzy Stochastic Approach
Authors: Oshmita Dey, Debjani Chakraborty
Abstract:
In this paper, a single period inventory model with resalable returns has been analyzed in an imprecise and uncertain mixed environment. Demand has been introduced as a fuzzy random variable. In this model, a single order is placed before the start of the selling season. The customer, for a full refund, may return purchased products within a certain time interval. Returned products are resalable, provided they arrive back before the end of the selling season and are found to be undamaged. Products remaining at the end of the season are salvaged. All demands not met directly are lost. The probabilities that a sold product is returned and that a returned product is resalable, both imprecise in a real situation, have been assumed to be fuzzy in nature.
Keywords: Fuzzy random variable, Modified graded meanintegration, Internet mail order, Inventory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528649 An Embedded System for Artificial Intelligence Applications
Authors: Ioannis P. Panagopoulos, Christos C. Pavlatos, George K. Papakonstantinou
Abstract:
Conventional approaches in the implementation of logic programming applications on embedded systems are solely of software nature. As a consequence, a compiler is needed that transforms the initial declarative logic program to its equivalent procedural one, to be programmed to the microprocessor. This approach increases the complexity of the final implementation and reduces the overall system's performance. On the contrary, presenting hardware implementations which are only capable of supporting logic programs prevents their use in applications where logic programs need to be intertwined with traditional procedural ones, for a specific application. We exploit HW/SW codesign methods to present a microprocessor, capable of supporting hybrid applications using both programming approaches. We take advantage of the close relationship between attribute grammar (AG) evaluation and knowledge engineering methods to present a programmable hardware parser that performs logic derivations and combine it with an extension of a conventional RISC microprocessor that performs the unification process to report the success or failure of those derivations. The extended RISC microprocessor is still capable of executing conventional procedural programs, thus hybrid applications can be implemented. The presented implementation is programmable, supports the execution of hybrid applications, increases the performance of logic derivations (experimental analysis yields an approximate 1000% increase in performance) and reduces the complexity of the final implemented code. The proposed hardware design is supported by a proposed extended C-language called C-AG.
Keywords: Attribute Grammars, Logic Programming, RISC microprocessor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5087648 Extended Intuitionistic Fuzzy VIKOR Method in Group Decision Making: The Case of Vendor Selection Decision
Authors: Nastaran Hajiheydari, Mohammad Soltani Delgosha
Abstract:
Vendor (supplier) selection is a group decision-making (GDM) process, in which, based on some predetermined criteria, the experts’ preferences are provided in order to rank and choose the most desirable suppliers. In the real business environment, our attitudes or our choices would be made in an uncertain and indecisive situation could not be expressed in a crisp framework. Intuitionistic fuzzy sets (IFSs) could handle such situations in the best way. VIKOR method was developed to solve multi-criteria decision-making (MCDM) problems. This method, which is used to determine the compromised feasible solution with respect to the conflicting criteria, introduces a multi-criteria ranking index based on the particular measure of 'closeness' to the 'ideal solution'. Until now, there has been a little investigation of VIKOR with IFS, therefore we extended the intuitionistic fuzzy (IF) VIKOR to solve vendor selection problem under IF GDM environment. The present study intends to develop an IF VIKOR method in a GDM situation. Therefore, a model is presented to calculate the criterion weights based on entropy measure. Then, the interval-valued intuitionistic fuzzy weighted geometric (IFWG) operator utilized to obtain the total decision matrix. In the next stage, an approach based on the positive idle intuitionistic fuzzy number (PIIFN) and negative idle intuitionistic fuzzy number (NIIFN) was developed. Finally, the application of the proposed method to solve a vendor selection problem illustrated.
Keywords: Group decision making, intuitionistic fuzzy entropy measure, intuitionistic fuzzy set, vendor selection VIKOR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734647 Some Clopen Sets in the Uniform Topology on BCI-algebras
Authors: A. Hasankhani, H. Saadat, M. M. Zahedi
Abstract:
In this paper some properties of the uniformity topology on a BCI-algebras are discussed.
Keywords: (Fuzzy) ideal, (Fuzzy) subalgebra, Uniformity, clopen sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658646 Design of Parity-Preserving Reversible Logic Signed Array Multipliers
Authors: Mojtaba Valinataj
Abstract:
Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.Keywords: Array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026645 Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm
Authors: Mahmoud Saeidi, Khadijeh Saeidi, Mahmoud Khaleghi
Abstract:
In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.Keywords: Image Sequences, Noise Reduction, fuzzy algorithm, triangular membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880644 Data Oriented Modeling of Uniform Random Variable: Applied Approach
Authors: Ahmad Habibizad Navin, Mehdi Naghian Fesharaki, Mirkamal Mirnia, Mohamad Teshnelab, Ehsan Shahamatnia
Abstract:
In this paper we introduce new data oriented modeling of uniform random variable well-matched with computing systems. Due to this conformity with current computers structure, this modeling will be efficiently used in statistical inference.Keywords: Uniform random variable, Data oriented modeling, Statistical inference, Prodigraph, Statistically complete tree, Uniformdigital probability digraph, Uniform n-complete probability tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631