Search results for: Parametric Array
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 736

Search results for: Parametric Array

136 Optimization of Surface Roughness in Turning Process Utilizing Live Tooling via Taguchi Methodology

Authors: Weinian Wang, Joseph C. Chen

Abstract:

The objective of this research is to optimize the process of cutting cylindrical workpieces utilizing live tooling on a HAAS ST-20 lathe. Surface roughness (Ra) has been investigated as the indicator of quality characteristics for machining process. Aluminum alloy was used to conduct experiments due to its wide range usages in engineering structures and components where light weight or corrosion resistance is required. In this study, Taguchi methodology is utilized to determine the effects that each of the parameters has on surface roughness (Ra). A total of 18 experiments of each process were designed according to Taguchi’s L9 orthogonal array (OA) with four control factors at three levels of each and signal-to-noise ratios (S/N) were computed with Smaller the better equation for minimizing the system. The optimal parameters identified for the surface roughness of the turning operation utilizing live tooling were a feed rate of 3 inches/min(A3); a spindle speed of 1300 rpm(B3); a 2-flute titanium nitrite coated 3/8” endmill (C1); and a depth of cut of 0.025 inches (D2). The mean surface roughness of the confirmation runs in turning operation was 8.22 micro inches. The final results demonstrate that Taguchi methodology is a sufficient way of process improvement in turning process on surface roughness.

Keywords: Live tooling, surface roughness, Taguchi Parameter Design, CNC turning operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
135 Optimum Design of an 8x8 Optical Switch with Thermal Compensated Mechanisms

Authors: Tien-Tung Chung, Chin-Te Lin, Chung-Yun Lee, Kuang-Chao Fan, Shou-Heng Chen

Abstract:

This paper studies the optimum design for reducing optical loss of an 8x8 mechanical type optical switch due to the temperature change. The 8x8 optical switch is composed of a base, 8 input fibers, 8 output fibers, 3 fixed mirrors and 17 movable mirrors. First, an innovative switch configuration is proposed with thermal-compensated design. Most mechanical type optical switches have a disadvantage that their precision and accuracy are influenced by the ambient temperature. Therefore, the thermal-compensated design is to deal with this situation by using materials with different thermal expansion coefficients (α). Second, a parametric modeling program is developed to generate solid models for finite element analysis, and the thermal and structural behaviors of the switch are analyzed. Finally, an integrated optimum design program, combining Autodesk Inventor Professional software, finite element analysis software, and genetic algorithms, is developed for improving the thermal behaviors that the optical loss of the switch is reduced. By changing design parameters of the switch in the integrated design program, the final optimum design that satisfies the design constraints and specifications can be found.

Keywords: Optical switch, finite element analysis, thermal-compensated design, optimum design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
134 Protein Profiling in Alanine Aminotransferase Induced Patient cohort using Acetaminophen

Authors: Gry M, Bergström J, Lengquist J, Lindberg J, Drobin K, Schwenk J, Nilsson P, Schuppe-Koistinen I.

Abstract:

Sensitive and predictive DILI (Drug Induced Liver Injury) biomarkers are needed in drug R&D to improve early detection of hepatotoxicity. The discovery of DILI biomarkers that demonstrate the predictive power to identify individuals at risk to DILI would represent a major advance in the development of personalized healthcare approaches. In this healthy volunteer acetaminophen study (4g/day for 7 days, with 3 monitored nontreatment days before and 4 after), 450 serum samples from 32 subjects were analyzed using protein profiling by antibody suspension bead arrays. Multiparallel protein profiles were generated using a DILI target protein array with 300 antibodies, where the antibodies were selected based on previous literature findings of putative DILI biomarkers and a screening process using pre dose samples from the same cohort. Of the 32 subjects, 16 were found to develop an elevated ALT value (2Xbaseline, responders). Using the plasma profiling approach together with multivariate statistical analysis some novel findings linked to lipid metabolism were found and more important, endogenous protein profiles in baseline samples (prior to treatment) with predictive power for ALT elevations were identified.

Keywords: DILI, Plasma profiling, PLSDA, Randomforest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
133 Automotive 3-Microphone Noise Canceller in a Frequently Moving Noise Source Environment

Authors: Z. Qi, T. J. Moir

Abstract:

A combined three-microphone voice activity detector (VAD) and noise-canceling system is studied to enhance speech recognition in an automobile environment. A previous experiment clearly shows the ability of the composite system to cancel a single noise source outside of a defined zone. This paper investigates the performance of the composite system when there are frequently moving noise sources (noise sources are coming from different locations but are not always presented at the same time) e.g. there is other passenger speech or speech from a radio when a desired speech is presented. To work in a frequently moving noise sources environment, whilst a three-microphone voice activity detector (VAD) detects voice from a “VAD valid zone", the 3-microphone noise canceller uses a “noise canceller valid zone" defined in freespace around the users head. Therefore, a desired voice should be in the intersection of the noise canceller valid zone and VAD valid zone. Thus all noise is suppressed outside this intersection of area. Experiments are shown for a real environment e.g. all results were recorded in a car by omni-directional electret condenser microphones.

Keywords: Signal processing, voice activity detection, noise canceller, microphone array beam forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
132 Status Report of the GERDA Phase II Startup

Authors: Valerio D’Andrea

Abstract:

The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter 76Ge(enrGe) are exposed being both source and detectors of 0νββ decay. Neutrinoless double beta decay is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, just after the completion of the first part of its experimental program (Phase I), the GERDA setup has been upgraded to perform its next step in the 0νββ searches (Phase II). Phase II aims to reach a sensitivity to the 0νββ decay half-life larger than 1026 yr in about 3 years of physics data taking. This exposing a detector mass of about 35 kg of enrGe and with a background index of about 10^−3 cts/(keV·kg·yr). One of the main new implementations is the liquid argon scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper, the GERDA Phase II expected goals, the upgrade work and few selected features from the 2015 commissioning and 2016 calibration runs will be presented. The main Phase I achievements will be also reviewed.

Keywords: Gerda, double beta decay, germanium, LNGS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
131 Process Parameter Optimization in Resistance Spot Welding of Dissimilar Thickness Materials

Authors: Pradeep M., N. S. Mahesh, Raja Hussain

Abstract:

Resistance spot welding (RSW) has been used widely to join sheet metals. It has been a challenge to get required weld quality in spot welding of dissimilar thickness materials. Weld parameters are not generally available in standards for thickness beyond 4mm. This paper presents the welding process design and parameter optimization of RSW used in joining of low carbon steel sheet of thickness 0.8 mm and metal strips of cross section 10 x 5mm for electrical motor applications. Taguchi quality design was adopted for weld current and time optimization using L9 orthogonal array. Optimum process parameters (current- 3.5kA and time- 10 cycles) were obtained from the Taguchi analysis and shear test results. Confirmation experiment result revealed that the weld quality was within acceptable interval. Further, numerical simulation of RSW process was carried out with selected weld parameters to quantify the temperature at faying surface and check for formation of appropriate nugget. The nugget geometry measured after peel test and predicted from numerical validation method were similar and in accordance with the standards.

Keywords: Resistance spot welding, dissimilar thickness, weld parameters, Taguchi method, numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5159
130 Diagnostic Investigation of Liftoff Time of Solid Propellant Rockets

Authors: Vignesh Rangaraj, Jerin John, N. Naveen, M. Karuppasamy Pandian, P. Sathyan, V. R. Sanal Kumar

Abstract:

In this paper parametric analytical studies have been carried out to examine the intrinsic flow physics pertaining to the liftoff time of solid propellant rockets. Idealized inert simulators of solid rockets are selected for numerical studies to examining the preignition chamber dynamics. Detailed diagnostic investigations have been carried out using an unsteady two-dimensional k-omega turbulence model. We conjectured from the numerical results that the altered variations of the igniter jet impingement angle, turbulence level, time and location of the first ignition, flame spread characteristics, the overall chamber dynamics including the boundary layer growth history are having bearing on the time for nozzle flow chocking for establishing the required thrust for the rocket liftoff. We concluded that the altered flow choking time of strap-on motors with the pre-determined identical ignition time at the lift off phase will lead to the malfunctioning of the rocket. We also concluded that, in the light of the space debris, an error in predicting the liftoff time can lead to an unfavorable launch window amounts the satellite injection errors and/or the mission failures.

Keywords: Liftoff, Nozzle Choking, Solid Rocket, Takeoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
129 Accurate Modeling and Nonlinear Finite Element Analysis of a Flexible-Link Manipulator

Authors: M. Pala Prasad Reddy, Jeevamma Jacob

Abstract:

Accurate dynamic modeling and analysis of flexible link manipulator (FLM) with non linear dynamics is very difficult due to distributed link flexibility and few studies have been conducted based on assumed modes method (AMM) and finite element models. In this paper a nonlinear dynamic model with first two elastic modes is derived using combined Euler/Lagrange and AMM approaches. Significant dynamics associated with the system such as hub inertia, payload, structural damping, friction at joints, combined link and joint flexibility are incorporated to obtain the complete and accurate dynamic model. The response of the FLM to the applied bang-bang torque input is compared against the models derived from LS-DYNA finite element discretization approach and linear finite element models. Dynamic analysis is conducted using LS-DYNA finite element model which uses the explicit time integration scheme to simulate the system. Parametric study is conducted to show the impact payload mass. A numerical result shows that the LS-DYNA model gives the smooth hub-angle profile.

 

Keywords: Flexible link manipulator, AMM, FEM, LS-DYNA, Bang-bang torque input.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2890
128 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part I: Modeling

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

This paper and its companion (Part 2) deal with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system-s efficiency and productivity. The complexity of the problems is harder when flexibilities of operations such as the possibility of operation processed on alternative machines with alternative tools are considered. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. These real numbers can be converted into part type sequence and machines that are used to process the part types. This first part of the papers focuses on the modeling of the problems and discussing how the novel chromosome representation can be applied to solve the problems. The second part will discuss the effectiveness of the RCGA to solve various test bed problems.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
127 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion

Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina

Abstract:

The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.

Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
126 Influence of Taguchi Selected Parameters on Properties of CuO-ZrO2 Nanoparticles Produced via Sol-gel Method

Authors: H. Abdizadeh, Y. Vahidshad

Abstract:

The present paper discusses the selection of process parameters for obtaining optimal nanocrystallites size in the CuOZrO2 catalyst. There are some parameters changing the inorganic structure which have an influence on the role of hydrolysis and condensation reaction. A statistical design test method is implemented in order to optimize the experimental conditions of CuO-ZrO2 nanoparticles preparation. This method is applied for the experiments and L16 orthogonal array standard. The crystallites size is considered as an index. This index will be used for the analysis in the condition where the parameters vary. The effect of pH, H2O/ precursor molar ratio (R), time and temperature of calcination, chelating agent and alcohol volume are particularity investigated among all other parameters. In accordance with the results of Taguchi, it is found that temperature has the greatest impact on the particle size. The pH and H2O/ precursor molar ratio have low influences as compared with temperature. The alcohol volume as well as the time has almost no effect as compared with all other parameters. Temperature also has an influence on the morphology and amorphous structure of zirconia. The optimal conditions are determined by using Taguchi method. The nanocatalyst is studied by DTA-TG, XRD, EDS, SEM and TEM. The results of this research indicate that it is possible to vary the structure, morphology and properties of the sol-gel by controlling the above-mentioned parameters.

Keywords: CuO-ZrO2 Nanoparticles, Sol-gel, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
125 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification

Authors: Ishapathik Das

Abstract:

The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.

Keywords: Model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
124 A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction

Authors: Jun Wang, Tingcun Wei

Abstract:

The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters.

Keywords: DPWM, PLL megafunction, FPGA, time resolution, digitally-controlled DC-DC switching converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
123 A Maximum Power Point Tracker for PV Panels Using SEPIC Converter

Authors: S. Ganesh, J. Janani, G. Besliya Angel

Abstract:

Photovoltaic (PV) energy is one of the most important renewable energy sources. Maximum Power Point Tracking (MPPT) techniques should be used in photovoltaic systems to maximize the PV panel output power by tracking continuously the maximum power point which depends on panel’s temperature and on irradiance conditions. Incremental conductance control method has been used as MPPT algorithm. The methodology is based on connecting a pulse width modulated dc/dc SEPIC converter, which is controlled by a microprocessor based unit. The SEPIC converter is one of the buck-boost converters which maintain the output voltage as constant irrespective of the solar isolation level. By adjusting the switching frequency of the converter the maximum power point has been achieved. The main difference between the method used in the proposed MPPT systems and other technique used in the past is that PV array output power is used to directly control the dc/dc converter thus reducing the complexity of the system. The resulting system has high efficiency, low cost and can be easily modified. The tracking capability has been verified experimentally with a 10 W solar panel under a controlled experimental setup. The SEPIC converter and their control strategies has been analyzed and simulated using Simulink/Matlab software.

Keywords: Maximum Power Point Tracking, Microprocessor, PV Module, SEPIC Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5932
122 An Anisotropic Model of Damage and Unilateral Effect for Brittle Materials

Authors: José Julio de C. Pituba

Abstract:

This work deals with the initial applications and formulation of an anisotropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.

Keywords: Damage model, plastic strain, unilateral effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
121 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete

Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen

Abstract:

The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.

Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
120 EGCL: An Extended G-Code Language with Flow Control, Functions and Mnemonic Variables

Authors: Oscar E. Ruiz, S. Arroyave, J. F. Cardona

Abstract:

In the context of computer numerical control (CNC) and computer aided manufacturing (CAM), the capabilities of programming languages such as symbolic and intuitive programming, program portability and geometrical portfolio have special importance. They allow to save time and to avoid errors during part programming and permit code re-usage. Our updated literature review indicates that the current state of art presents voids in parametric programming, program portability and programming flexibility. In response to this situation, this article presents a compiler implementation for EGCL (Extended G-code Language), a new, enriched CNC programming language which allows the use of descriptive variable names, geometrical functions and flow-control statements (if-then-else, while). Our compiler produces low-level generic, elementary ISO-compliant Gcode, thus allowing for flexibility in the choice of the executing CNC machine and in portability. Our results show that readable variable names and flow control statements allow a simplified and intuitive part programming and permit re-usage of the programs. Future work includes allowing the programmer to define own functions in terms of EGCL, in contrast to the current status of having them as library built-in functions.

Keywords: CNC Programming, Compiler, G-code Language, Numerically Controlled Machine-Tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588
119 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network

Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas

Abstract:

The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.

Keywords: Distributed Generation(DG), Interconnected mode, Islanding mode, Maximum power point tracking (MPPT), Power Quality (PQ), Unified power quality conditioner (UPQC), Photovoltaic array (PV).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
118 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.

Keywords: Incremental conductance Algorithm, Perturb and Observe Algorithm, Photovoltaic System and Simulation Results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
117 A Smart Monitoring System for Preventing Gas Risks in Indoor

Authors: Gyoutae Park, Geunjun Lyu, Yeonjae Lee, Wooksuk Kim, Jaheon Gu, Sanguk Ahn, Hiesik Kim

Abstract:

In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.

Keywords: Gas sensor, leak, gas safety, gas meter, gas risk, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679
116 Comparative Study of Complexity in Streetscape Composition

Authors: Ahmed Mansouri, Naoji Matsumoto

Abstract:

This research is a comparative study of complexity, as a multidimensional concept, in the context of streetscape composition in Algeria and Japan. 80 streetscapes visual arrays have been collected and then presented to 20 participants, with different cultural backgrounds, in order to be categorized and classified according to their degrees of complexity. Three analysis methods have been used in this research: cluster analysis, ranking method and Hayashi Quantification method (Method III). The results showed that complexity, disorder, irregularity and disorganization are often conflicting concepts in the urban context. Algerian daytime streetscapes seem to be balanced, ordered and regular, and Japanese daytime streetscapes seem to be unbalanced, regular and vivid. Variety, richness and irregularity with some aspects of order and organization seem to characterize Algerian night streetscapes. Japanese night streetscapes seem to be more related to balance, regularity, order and organization with some aspects of confusion and ambiguity. Complexity characterized mainly Algerian avenues with green infrastructure. Therefore, for Japanese participants, Japanese traditional night streetscapes were complex. And for foreigners, Algerian and Japanese avenues nightscapes were the most complex visual arrays.

Keywords: Streetscape, Nightscape, Complexity, Visual Array, Affordance, Cluster Analysis, Hayashi Quantification Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
115 A Novel Digital Implementation of AC Voltage Controller for Speed Control of Induction Motor

Authors: Ali M. Eltamaly, A. I. Alolah, R. Hamouda, M. Y. Abdulghany

Abstract:

In this paper a novel, simple and reliable digital firing scheme has been implemented for speed control of three-phase induction motor using ac voltage controller. The system consists of three-phase supply connected to the three-phase induction motor via three triacs and its control circuit. The ac voltage controller has three modes of operation depending on the shape of supply current. The performance of the induction motor differs in each mode where the speed is directly proportional with firing angle in two modes and inversely in the third one. So, the control system has to detect the current mode of operation to choose the correct firing angle of triacs. Three sensors are used to feed the line currents to control system to detect the mode of operation. The control strategy is implemented using a low cost Xilinx Spartan-3E field programmable gate array (FPGA) device. Three PI-controllers are designed on FPGA to control the system in the three-modes. Simulation of the system is carried out using PSIM computer program. The simulation results show stable operation for different loading conditions especially in mode 2/3. The simulation results have been compared with the experimental results from laboratory prototype.

Keywords: FPGA, Induction motor, PSIM, triac, Voltage controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
114 The Techno-Economic and Environmental Assessments of Grid-Connected Photovoltaic Systems in Bhubaneswar, India

Authors: A. K. Pradhan, M. K. Mohanty, S. K. Kar

Abstract:

The power system utility has started to think about the green power technology in order to have an eco-friendly environment. The green power technology utilizes renewable energy sources for reduction of GHG emissions. Odisha state (India) is very rich in potential of renewable energy sources especially in solar energy (about 300 solar days), for installation of grid connected photovoltaic system. This paper focuses on the utilization of photovoltaic systems in an Institute building of Bhubaneswar city, Odisha. Different data like solar insolation (kW/m2/day), sunshine duration has been collected from metrological stations for Bhubaneswar city. The required electrical power and cost are calculated for daily load of 1.0 kW. The HOMER (Hybrid Optimization Model of Electric Renewable) software is used to estimate system size and its performance analysis. The simulation result shows that the cost of energy (COE) is $ 0.194/kWh, the Operating cost is $63/yr and the net present cost (NPC) is $3,917. The energy produced from PV array is 1,756kWh/yr and energy purchased from grid is 410kWh/yr. The AC primary load consumption is 1314 kWh/yr and the Grid sales are 746 kWh/yr. One battery is connected in parallel with 12V DC Bus and the usable nominal capacity 2.4 kWh with 9.6 h autonomy capacity.

Keywords: Economic assessment, HOMER, Optimization, Photovoltaic (PV), Renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
113 Assessment of Pier Foundations for Onshore Wind Turbines in Non-cohesive Soil

Authors: Mauricio Terceros, Jann-Eike Saathoff, Martin Achmus

Abstract:

In non-cohesive soil, onshore wind turbines are often found on shallow foundations with a circular or octagonal shape. For the current generation of wind turbines, shallow foundations with very large breadths are required. The foundation support costs thus represent a considerable portion of the total construction costs. Therefore, an economic optimization of the type of foundation is highly desirable. A conceivable alternative foundation type would be a pier foundation, which combines the load transfer over the foundation area at the pier base with the transfer of horizontal loads over the shaft surface of the pier. The present study aims to evaluate the load-bearing behavior of a pier foundation based on comprehensive parametric studies. Thereby, three-dimensional numerical simulations of both pier and shallow foundations are developed. The evaluation of the results focuses on the rotational stiffnesses of the proposed soil-foundation systems. In the design, the initial rotational stiffness is decisive for consideration of natural frequencies, whereas the rotational secant stiffness for a maximum load is decisive for serviceability considerations. A systematic analysis of the results at different load levels shows that the application of the typical pier foundation is presumably limited to relatively small onshore wind turbines.

Keywords: Onshore wind foundation, pier foundation, rotational stiffness of soil-foundation system, shallow foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
112 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: Design of Experiment, Taguchi Design, Optimization, Analysis of Variance, Machining Parameters, Horizontal Boring Tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682
111 Optimization of Process Parameters of Pressure Die Casting using Taguchi Methodology

Authors: Satish Kumar, Arun Kumar Gupta, Pankaj Chandna

Abstract:

The present work analyses different parameters of pressure die casting to minimize the casting defects. Pressure diecasting is usually applied for casting of aluminium alloys. Good surface finish with required tolerances and dimensional accuracy can be achieved by optimization of controllable process parameters such as solidification time, molten temperature, filling time, injection pressure and plunger velocity. Moreover, by selection of optimum process parameters the pressure die casting defects such as porosity, insufficient spread of molten material, flash etc. are also minimized. Therefore, a pressure die casting component, carburetor housing of aluminium alloy (Al2Si2O5) has been considered. The effects of selected process parameters on casting defects and subsequent setting of parameters with the levels have been accomplished by Taguchi-s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L18 orthogonal array. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the percent contribution of different process parameters. Confidence interval has also been estimated for 95% consistency level and three conformational experiments have been performed to validate the optimum level of different parameters. Overall 2.352% reduction in defects has been observed with the help of suggested optimum process parameters.

Keywords: Aluminium Casting, Pressure Die Casting, Taguchi Methodology, Design of Experiments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7305
110 Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete

Authors: Abdulkarim Mohammed Iliyasu, Mahmud Abba Tahir

Abstract:

Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 0C and 20 0C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage.

Keywords: Concrete, conductance, deterioration, freezing and thawing, ordinary Portland cement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
109 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
108 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method

Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari

Abstract:

The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.

Keywords: Optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
107 Clinical Utility of Salivary Cytokines for Children with Attention Deficit Hyperactivity Disorder

Authors: Masaki Yamaguchi, Daimei Sasayama, Shinsuke Washizuka

Abstract:

The goal of this study was to examine the possibility of salivary cytokines for the screening of attention deficit hyperactivity disorder (ADHD) in children. We carried out a case-control study, including 19 children with ADHD and 17 healthy children (controls). A multiplex bead array immunoassay was used to conduct a multi-analysis of 27 different salivary cytokines. Six salivary cytokines (interleukin (IL)-1β, IL-8, IL12p70, granulocyte colony-stimulating factor (G-CSF), interferon gamma (IFN-γ), and vascular endothelial growth factor (VEGF)) were significantly associated with the presence of ADHD (p < 0.05). An informative salivary cytokine panel was developed using VEGF by logistic regression analysis (odds ratio: 0.251). Receiver operating characteristic analysis revealed that assessment of a panel using VEGF showed “good” capability for discriminating between ADHD patients and controls (area under the curve: 0.778). ADHD has been hypothesized to be associated with reduced cerebral blood flow in the frontal cortex, due to reduced VEGF levels. Our study highlights the possibility of utilizing differential salivary cytokine levels for point-of-care testing (POCT) of biomarkers in children with ADHD.

Keywords: Cytokine, saliva, attention deficit hyperactivity disorder, child, biomarker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666