Search results for: performance assessment
821 Advances in Artificial Intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: Speech recognition, acoustic phonetic, artificial intelligence, Hidden Markov Models (HMM), statistical models of speech recognition, human machine performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7980820 A Comparison of Tsunami Impact to Sydney Harbour, Australia at Different Tidal Stages
Authors: Olivia A. Wilson, Hannah E. Power, Murray Kendall
Abstract:
Sydney Harbour is an iconic location with a dense population and low-lying development. On the east coast of Australia, facing the Pacific Ocean, it is exposed to several tsunamigenic trenches. This paper presents a component of the most detailed assessment of the potential for earthquake-generated tsunami impact on Sydney Harbour to date. Models in this study use dynamic tides to account for tide-tsunami interaction. Sydney Harbour’s tidal range is 1.5 m, and the spring tides from January 2015 that are used in the modelling for this study are close to the full tidal range. The tsunami wave trains modelled include hypothetical tsunami generated from earthquakes of magnitude 7.5, 8.0, 8.5, and 9.0 MW from the Puysegur and New Hebrides trenches as well as representations of the historical 1960 Chilean and 2011 Tohoku events. All wave trains are modelled for the peak wave to coincide with both a low tide and a high tide. A single wave train, representing a 9.0 MW earthquake at the Puysegur trench, is modelled for peak waves to coincide with every hour across a 12-hour tidal phase. Using the hydrodynamic model ANUGA, results are compared according to the impact parameters of inundation area, depth variation and current speeds. Results show that both maximum inundation area and depth variation are tide dependent. Maximum inundation area increases when coincident with a higher tide, however, hazardous inundation is only observed for the larger waves modelled: NH90high and P90high. The maximum and minimum depths are deeper on higher tides and shallower on lower tides. The difference between maximum and minimum depths varies across different tidal phases although the differences are slight. Maximum current speeds are shown to be a significant hazard for Sydney Harbour; however, they do not show consistent patterns according to tide-tsunami phasing. The maximum current speed hazard is shown to be greater in specific locations such as Spit Bridge, a narrow channel with extensive marine infrastructure. The results presented for Sydney Harbour are novel, and the conclusions are consistent with previous modelling efforts in the greater area. It is shown that tide must be a consideration for both tsunami modelling and emergency management planning. Modelling with peak tsunami waves coinciding with a high tide would be a conservative approach; however, it must be considered that maximum current speeds may be higher on other tides.
Keywords: Emergency management, Sydney, tide-tsunami interaction, tsunami impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208819 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.
Keywords: Human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, Prior distribution and approximate posterior distribution, KTH dataset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009818 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination
Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad
Abstract:
Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576817 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.
Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489816 A Quick Prediction for Shear Behaviour of RC Membrane Elements by Fixed-Angle Softened Truss Model with Tension-Stiffening
Authors: X. Wang, J. S. Kuang
Abstract:
The Fixed-angle Softened Truss Model with Tension-stiffening (FASTMT) has a superior performance in predicting the shear behaviour of reinforced concrete (RC) membrane elements, especially for the post-cracking behaviour. Nevertheless, massive computational work is inevitable due to the multiple transcendental equations involved in the stress-strain relationship. In this paper, an iterative root-finding technique is introduced to FASTMT for solving quickly the transcendental equations of the tension-stiffening effect of RC membrane elements. This fast FASTMT, which performs in MATLAB, uses the bisection method to calculate the tensile stress of the membranes. By adopting the simplification, the elapsed time of each loop is reduced significantly and the transcendental equations can be solved accurately. Owing to the high efficiency and good accuracy as compared with FASTMT, the fast FASTMT can be further applied in quick prediction of shear behaviour of complex large-scale RC structures.
Keywords: Bisection method, fixed-angle softened truss model with tension-stiffening, iterative root-finding technique, reinforced concrete membrane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830815 Providing Emotional Support to Children under Long-Term Health Treatments
Authors: Ramón Cruzat, Sergio F. Ochoa, Ignacio Casas, Luis A. Guerrero, José Bravo
Abstract:
Patients under health treatments that involve long stays at a hospital or health center (e.g. cancer, organ transplants and severe burns), tend to get bored or depressed because of the lack of social interaction with family and friends. Such a situation also affects the evolution and effectiveness of their treatments. In many cases, the solution to this problem involves extra challenges, since many patients need to rest quietly (or remain in bed) to their being contagious. Considering the weak health condition in which usually are these kinds, keeping them motivated and quiet represents an important challenge for nurses and caregivers. This article presents a mobile ubiquitous game called MagicRace, which allows hospitalized kinds to interact socially with one another without putting to risk their sensitive health conditions. The game does not require a communication infrastructure at the hospital, but instead, it uses a mobile ad hoc network composed of the handheld devices used by the kids to play. The usability and performance of this application was tested in two different sessions. The preliminary results show that users experienced positive feelings from this experience.
Keywords: Ubiquitous game, children's emotional support, social isolation, mobile collaborative interactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669814 Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials
Authors: Mohsin T. Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.Keywords: Wear Resistance, Heat Treatment, Thermomechanical Processing, Biomedical Titanium Materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3665813 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System
Authors: Shane D. Inder, Mehrdad Khamooshi
Abstract:
Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.
Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119812 Titania and Cu-Titania Composite Layer on Graphite Substrate as Negative Electrode for Li-Ion Battery
Authors: Fitria Rahmawati, Nuryani, Liviana Wijayanti
Abstract:
This research study the application of the immobilized TiO2 layer and Cu-TiO2 layer on graphite substrate as a negative electrode or anode for Li-ion battery. The titania layer was produced through chemical bath deposition method, meanwhile Cu particles were deposited electrochemically. A material can be used as an electrode as it has capability to intercalates Li ions into its crystal structure. The Li intercalation into TiO2/Graphite and Cu- TiO2/Graphite were analyzed from the changes of its XRD pattern after it was used as electrode during discharging process. The XRD patterns were refined by Le Bail method in order to determine the crystal structure of the prepared materials. A specific capacity and the cycle ability measurement were carried out to study the performance of the prepared materials as negative electrode of the Li-ion battery. The specific capacity was measured during discharging process from fully charged until the cut off voltage. A 300 was used as a load. The result shows that the specific capacity of Li-ion battery with TiO2/Graphite as negative electrode is 230.87 ± 1.70mAh.g-1 which is higher than the specific capacity of Li-ion battery with pure graphite as negative electrode, i.e 140.75 ±0.46mAh.g-1. Meanwhile deposition of Cu onto TiO2 layer does not increase the specific capacity, and the value even lower than the battery with TiO2/Graphite as electrode. The cycle ability of the prepared battery is only two cycles, due to the Li ribbon which was used as cathode became fragile and easily broken.Keywords: Cu-TiO2, electrode, graphite substrate, Li-ion battery, TiO2 layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957811 Comparison and Characterization of Dyneema™ HB-210 and HB-212 for Accelerated UV Aging
Authors: Jonmichael A. Weaver, David A. Miller
Abstract:
Ultra High Molecular Weight Polyethylene (UHMWPE) presents several distinct advantages as a material with a high strength to weight ratio, durability, and neutron stability. Understanding the change in the mechanical performance of UHMWPE due to environmental exposure is key to safety for future applications. Dyneema® HB-210, a 15 µm diameter UHMWPE multi-filament fiber laid up in a polyurethane matrix in [0/ 90]2, with a thickness of 0.17 mm is compared to the same fiber and orientation system, HB-212, with a rubber-based matrix under UV aging conditions. UV aging tests according to ASTM-G154 were performed on both HB-210 and HB-212 to interrogate the change in mechanical properties, as measured through dynamic mechanical analysis and imaged using a scanning electron microscope. These results showed a decrease in both the storage modulus and loss modulus of the aged material compared to the unaged, even though the tan δ slightly increased. Material degradation occurred at a higher rate in Dyneema® HB-212 compared to HB-210. The HB-210 was characterized for the effects of 100 hours of UV aging via dynamic mechanical analysis. Scanning electron microscope images were taken of the HB-210 and HB-212 to identify the primary damage mechanisms in the matrix. Embrittlement and matrix spall were the products of prolonged UV exposure and erosion, resulting in decreased mechanical properties.
Keywords: Composite materials, material characterization, UV aging, UHMWPE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694810 Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation
Authors: Hamid Ahmadi, Shadi Asoodeh
Abstract:
The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-thethickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stresslife (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0°, saddle, and crown 180° positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KTjoint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints.Keywords: Tubular KT-joint, fatigue, degree of bending (DoB), axial loading, parametric formula.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557809 The Impact of Solution-Focused Brief Therapy on the Improvement of the Psychological Wellbeing of Family Supervisor Women
Authors: Kaveh Qaderi Bagajan, Osman Khanahmadi, Ziba Mamaghani Chaharborj, Majid Chenaparchi
Abstract:
The purpose of this study is to investigate the efficacy of the solution-focused brief therapy on improving the psychological wellbeing of family supervisor woman. This study has been carried out by semi-experimental method and in the form of pre-test, post-test performance on two groups (experimental and control), so that one sample group of 30 individuals was randomly achieved and were randomly divided in two groups of experimental (n=15) and control (n=15). To collect data, Ryff scale psychological wellbeing was used. After conducting pre-test (RSPWB) for two experimental and control groups, Solution-focused brief therapy interference was conducted on the experimental group during five two-hour sessions. Finally, Ryff scale psychological wellbeing was reused for the two groups as post-test and achieved outcomes that were analyzed using covariance. The results indicated that the significant increase of average marks of the experimental group in psychological wellbeing had better function than that of the control group. Finally, solution-focused brief therapy for improving psychological well-being of family supervisor women has a suitable capability and could be used in this way.Keywords: Solution-Focused Brief Therapy, Short-term Therapy, Family Supervisor Women, Psychological Wellbeing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005808 Graphic Analysis of Genotype by Environment Interaction for Maize Hybrid Yield Using Site Regression Stability Model
Authors: Saeed Safari Dolatabad, Rajab Choukan
Abstract:
Selection of maize (Zea mays) hybrids with wide adaptability across diverse farming environments is important, prior to recommending them to achieve a high rate of hybrid adoption. Grain yield of 14 maize hybrids, tested in a randomized completeblock design with four replicates across 22 environments in Iran, was analyzed using site regression (SREG) stability model. The biplot technique facilitates a visual evaluation of superior genotypes, which is useful for cultivar recommendation and mega-environment identification. The objectives of this study were (i) identification of suitable hybrids with both high mean performance and high stability (ii) to determine mega-environments for maize production in Iran. Biplot analysis identifies two mega-environments in this study. The first mega-environments included KRM, KSH, MGN, DZF A, KRJ, DRB, DZF B, SHZ B, and KHM, where G10 hybrid was the best performing hybrid. The second mega-environment included ESF B, ESF A, and SHZ A, where G4 hybrid was the best hybrid. According to the ideal-hybrid biplot, G10 hybrid was better than all other hybrids, followed by the G1 and G3 hybrids. These hybrids were identified as best hybrids that have high grain yield and high yield stability. GGE biplot analysis provided a framework for identifying the target testing locations that discriminates genotypes that are high yielding and stable.
Keywords: Zea mays L, GGE biplot, Multi-environment trials, Yield stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684807 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.
Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934806 Numerical Study on Parametrical Design of Long Shrouded Contra-Rotating Propulsion System in Hovering
Authors: Chao. Huo, Roger. Barènes, Jérémie. Gressier, Gilles.Grondin
Abstract:
The parametrical study of Shrouded Contra-rotating Rotor was done in this paper based on 2D axisymmetric simulations. The calculations were made with an actuator disk as double rotor model. It objects to explore and quantify the effects of different shroud geometry parameters mainly using the performance of power loading (PL), which could evaluate the whole propulsion system capability as 5 Newtontotal thrust generationfor hover demand. The numerical results show that:The increase of nozzle radius is desired but limited by the flow separation, its optimal design is around 1.15 times rotor radius, the viscosity effects greatly constraint the influence of nozzle shape, the divergent angle around 10.5° performs best for chosen nozzle length;The parameters of inlet such as leading edge curvature, radius and internal shape do not affect thrust great but play an important role in pressure distribution which could produce most part of shroud thrust, they should be chosen according to the reduction of adverse pressure gradients to reduce the risk of boundary separation.Keywords: Axisymmetric simulation, parametrical design, power loading, Shrouded Contra-Rotating Rotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874805 Interoperability and Performance Analysis of IEC61850 Based Substation Protection System
Authors: Ming-Ta Yang, Jyh-Cherng Gu, Po-Chun Lin, Yen-Lin Huang, Chun-Wei Huang, Jin-Lung Guan
Abstract:
Since IEC61850 substation communication standard represents the trend to develop new generations of Substation Automation System (SAS), many IED manufacturers pursue this technique and apply for KEMA. In order to put on the market to meet customer demand as fast as possible, manufacturers often apply their products only for basic environment standard certification but claim to conform to IEC61850 certification. Since verification institutes generally perform verification tests only on specific IEDs of the manufacturers, the interoperability between all certified IEDs cannot be guaranteed. Therefore the interoperability between IEDs from different manufacturers needs to be tested. Based upon the above reasons, this study applies the definitions of the information models, communication service, GOOSE functionality and Substation Configuration Language (SCL) of the IEC61850 to build the concept of communication protocols, and build the test environment. The procedures of the test of the data collection and exchange of the P2P communication mode and Client / Server communication mode in IEC61850 are outlined as follows. First, test the IED GOOSE messages communication capability from different manufacturers. Second, collect IED data from each IED with SCADA system and use HMI to display the SCADA platform. Finally, problems generally encountered in the test procedure are summarized.Keywords: GOOSE, IEC61850, IED, SCADA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5374804 Face Authentication for Access Control based on SVM using Class Characteristics
Authors: SeHun Lim, Sanghoon Kim, Sun-Tae Chung, Seongwon Cho
Abstract:
Face authentication for access control is a face membership authentication which passes the person of the incoming face if he turns out to be one of an enrolled person based on face recognition or rejects if not. Face membership authentication belongs to the two class classification problem where SVM(Support Vector Machine) has been successfully applied and shows better performance compared to the conventional threshold-based classification. However, most of previous SVMs have been trained using image feature vectors extracted from face images of each class member(enrolled class/unenrolled class) so that they are not robust to variations in illuminations, poses, and facial expressions and much affected by changes in member configuration of the enrolled class In this paper, we propose an effective face membership authentication method based on SVM using class discriminating features which represent an incoming face image-s associability with each class distinctively. These class discriminating features are weakly related with image features so that they are less affected by variations in illuminations, poses and facial expression. Through experiments, it is shown that the proposed face membership authentication method performs better than the threshold rule-based or the conventional SVM-based authentication methods and is relatively less affected by changes in member size and membership.Keywords: Face Authentication, Access control, member ship authentication, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510803 A Novel Digital Implementation of AC Voltage Controller for Speed Control of Induction Motor
Authors: Ali M. Eltamaly, A. I. Alolah, R. Hamouda, M. Y. Abdulghany
Abstract:
In this paper a novel, simple and reliable digital firing scheme has been implemented for speed control of three-phase induction motor using ac voltage controller. The system consists of three-phase supply connected to the three-phase induction motor via three triacs and its control circuit. The ac voltage controller has three modes of operation depending on the shape of supply current. The performance of the induction motor differs in each mode where the speed is directly proportional with firing angle in two modes and inversely in the third one. So, the control system has to detect the current mode of operation to choose the correct firing angle of triacs. Three sensors are used to feed the line currents to control system to detect the mode of operation. The control strategy is implemented using a low cost Xilinx Spartan-3E field programmable gate array (FPGA) device. Three PI-controllers are designed on FPGA to control the system in the three-modes. Simulation of the system is carried out using PSIM computer program. The simulation results show stable operation for different loading conditions especially in mode 2/3. The simulation results have been compared with the experimental results from laboratory prototype.Keywords: FPGA, Induction motor, PSIM, triac, Voltage controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920802 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: Web-based, workflow, HTML5, Cloud Computing, Queuing System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2916801 The Robust Clustering with Reduction Dimension
Authors: Dyah E. Herwindiati
Abstract:
A clustering is process to identify a homogeneous groups of object called as cluster. Clustering is one interesting topic on data mining. A group or class behaves similarly characteristics. This paper discusses a robust clustering process for data images with two reduction dimension approaches; i.e. the two dimensional principal component analysis (2DPCA) and principal component analysis (PCA). A standard approach to overcome this problem is dimension reduction, which transforms a high-dimensional data into a lower-dimensional space with limited loss of information. One of the most common forms of dimensionality reduction is the principal components analysis (PCA). The 2DPCA is often called a variant of principal component (PCA), the image matrices were directly treated as 2D matrices; they do not need to be transformed into a vector so that the covariance matrix of image can be constructed directly using the original image matrices. The decomposed classical covariance matrix is very sensitive to outlying observations. The objective of paper is to compare the performance of robust minimizing vector variance (MVV) in the two dimensional projection PCA (2DPCA) and the PCA for clustering on an arbitrary data image when outliers are hiden in the data set. The simulation aspects of robustness and the illustration of clustering images are discussed in the end of paperKeywords: Breakdown point, Consistency, 2DPCA, PCA, Outlier, Vector Variance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700800 Properties of Bacterial Nanocellulose for Scenic Arts
Abstract:
Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used such as review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: biology, art, costume design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, are resources that can be used to show a visual and poetic impact on stage.
Keywords: Biotechnological materials, contemporary dance, costume design, nano bacterial cellulose, performing arts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 522799 Satellite Sensing for Evaluation of an Irrigation System in Cotton - Wheat Zone
Authors: Sadia Iqbal, Faheem Iqbal, Furqan Iqbal
Abstract:
Efficient utilization of existing water is a pressing need for Pakistan. Due to rising population, reduction in present storage capacity and poor delivery efficiency of 30 to 40% from canal. A study to evaluate an irrigation system in the cotton-wheat zone of Pakistan, after the watercourse lining was conducted. The study is made on the basis of cropping pattern and salinity to evaluate the system. This study employed an index-based approach of using Geographic information system with field data. The satellite images of different years were use to examine the effective area. Several combinations of the ratio of signals received in different spectral bands were used for development of this index. Near Infrared and Thermal IR spectral bands proved to be most effective as this combination helped easy detection of salt affected area and cropping pattern of the study area. Result showed that 9.97% area under salinity in 1992, 9.17% in 2000 and it left 2.29% in year 2005. Similarly in 1992, 45% area is under vegetation it improves to 56% and 65% in 2000 and 2005 respectively. On the basis of these results evaluation is done 30% performance is increase after the watercourse improvement.Keywords: Salinity, remote sensing index, salinity index, cropping pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682798 The System for Root Canal Length Measurement Based on Multifrequency Impedance Method
Authors: Zheng Zhang, Xin Chen, Guoqing Ding
Abstract:
Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable.Keywords: Root canal length, apex locator, multifrequency impedance, sweep frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746797 Parametric Analysis in the Electronic Sensor Frequency Adjustment Process
Authors: Rungchat Chompu-Inwai, Akararit Charoenkasemsuk
Abstract:
The use of electronic sensors in the electronics industry has become increasingly popular over the past few years, and it has become a high competition product. The frequency adjustment process is regarded as one of the most important process in the electronic sensor manufacturing process. Due to inaccuracies in the frequency adjustment process, up to 80% waste can be caused due to rework processes; therefore, this study aims to provide a preliminary understanding of the role of parameters used in the frequency adjustment process, and also make suggestions in order to further improve performance. Four parameters are considered in this study: air pressure, dispensing time, vacuum force, and the distance between the needle tip and the product. A full factorial design for experiment 2k was considered to determine those parameters that significantly affect the accuracy of the frequency adjustment process, where a deviation in the frequency after adjustment and the target frequency is expected to be 0 kHz. The experiment was conducted on two levels, using two replications and with five center-points added. In total, 37 experiments were carried out. The results reveal that air pressure and dispensing time significantly affect the frequency adjustment process. The mathematical relationship between these two parameters was formulated, and the optimal parameters for air pressure and dispensing time were found to be 0.45 MPa and 458 ms, respectively. The optimal parameters were examined by carrying out a confirmation experiment in which an average deviation of 0.082 kHz was achieved.Keywords: Design of Experiment, Electronic Sensor, Frequency Adjustment, Parametric Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400796 Detecting Email Forgery using Random Forests and Naïve Bayes Classifiers
Authors: Emad E Abdallah, A.F. Otoom, ArwaSaqer, Ola Abu-Aisheh, Diana Omari, Ghadeer Salem
Abstract:
As emails communications have no consistent authentication procedure to ensure the authenticity, we present an investigation analysis approach for detecting forged emails based on Random Forests and Naïve Bays classifiers. Instead of investigating the email headers, we use the body content to extract a unique writing style for all the possible suspects. Our approach consists of four main steps: (1) The cybercrime investigator extract different effective features including structural, lexical, linguistic, and syntactic evidence from previous emails for all the possible suspects, (2) The extracted features vectors are normalized to increase the accuracy rate. (3) The normalized features are then used to train the learning engine, (4) upon receiving the anonymous email (M); we apply the feature extraction process to produce a feature vector. Finally, using the machine learning classifiers the email is assigned to one of the suspects- whose writing style closely matches M. Experimental results on real data sets show the improved performance of the proposed method and the ability of identifying the authors with a very limited number of features.Keywords: Digital investigation, cybercrimes, emails forensics, anonymous emails, writing style, and authorship analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5263795 Investigating Ultra Violet (UV) Strength against Different Level of Altitude using New Environmental Data Management System
Authors: M. Amir Abas, M. Dahlui
Abstract:
This paper presents the investigation results of UV measurement at different level of altitudes and the development of a new portable instrument for measuring UV. The rapid growth of industrial sectors in developing countries including Malaysia, brings not only income to the nation, but also causes pollution in various forms. Air pollution is one of the significant contributors to global warming by depleting the Ozone layer, which would reduce the filtration of UV rays. Long duration of exposure to high to UV rays has many devastating health effects to mankind directly or indirectly through destruction of the natural resources. This study aimed to show correlation between UV and altitudes which indirectly can help predict Ozone depletion. An instrument had been designed to measure and monitors the level of UV. The instrument comprises of two main blocks namely data logger and Graphic User Interface (GUI). Three sensors were used in the data logger to detect changes in the temperature, humidity and ultraviolet. The system has undergone experimental measurement to capture data at two different conditions; industrial area and high attitude area. The performance of the instrument showed consistency in the data captured and the results of the experiment drew a significantly high reading of UV at high altitudes.Keywords: Ozone Layer, Monitoring, Global Warming, Measurement, Ultraviolet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739794 Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor
Authors: M. Ahmadi Marvast, M. Sohrabi, H. Ganji
Abstract:
The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.
Keywords: Fischer-Tropsch, heterogeneous modeling, kinetic study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823793 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: Crime prediction, machine learning, public safety, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333792 Efficient Boosting-Based Active Learning for Specific Object Detection Problems
Authors: Thuy Thi Nguyen, Nguyen Dang Binh, Horst Bischof
Abstract:
In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.Keywords: Computer vision, object detection, online boosting, active learning, labeling complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791