Search results for: Inverse problem method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10505

Search results for: Inverse problem method

4505 An Information Theoretic Approach to Rescoring Peptides Produced by De Novo Peptide Sequencing

Authors: John R. Rose, James P. Cleveland, Alvin Fox

Abstract:

Tandem mass spectrometry (MS/MS) is the engine driving high-throughput protein identification. Protein mixtures possibly representing thousands of proteins from multiple species are treated with proteolytic enzymes, cutting the proteins into smaller peptides that are then analyzed generating MS/MS spectra. The task of determining the identity of the peptide from its spectrum is currently the weak point in the process. Current approaches to de novo sequencing are able to compute candidate peptides efficiently. The problem lies in the limitations of current scoring functions. In this paper we introduce the concept of proteome signature. By examining proteins and compiling proteome signatures (amino acid usage) it is possible to characterize likely combinations of amino acids and better distinguish between candidate peptides. Our results strongly support the hypothesis that a scoring function that considers amino acid usage patterns is better able to distinguish between candidate peptides. This in turn leads to higher accuracy in peptide prediction.

Keywords: Tandem mass spectrometry, proteomics, scoring, peptide, de novo, mutual information

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
4504 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner

Authors: A. Umemuro, M. Sato, M. Narita, S. Hori, S. Sakurai, T. Nakayama, A. Nakazawa, T. Ogura

Abstract:

Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.

Keywords: EEG scanner, eye-detector, mammography, observers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 381
4503 Combined Sewer Overflow forecasting with Feed-forward Back-propagation Artificial Neural Network

Authors: Achela K. Fernando, Xiujuan Zhang, Peter F. Kinley

Abstract:

A feed-forward, back-propagation Artificial Neural Network (ANN) model has been used to forecast the occurrences of wastewater overflows in a combined sewerage reticulation system. This approach was tested to evaluate its applicability as a method alternative to the common practice of developing a complete conceptual, mathematical hydrological-hydraulic model for the sewerage system to enable such forecasts. The ANN approach obviates the need for a-priori understanding and representation of the underlying hydrological hydraulic phenomena in mathematical terms but enables learning the characteristics of a sewer overflow from the historical data. The performance of the standard feed-forward, back-propagation of error algorithm was enhanced by a modified data normalizing technique that enabled the ANN model to extrapolate into the territory that was unseen by the training data. The algorithm and the data normalizing method are presented along with the ANN model output results that indicate a good accuracy in the forecasted sewer overflow rates. However, it was revealed that the accurate forecasting of the overflow rates are heavily dependent on the availability of a real-time flow monitoring at the overflow structure to provide antecedent flow rate data. The ability of the ANN to forecast the overflow rates without the antecedent flow rates (as is the case with traditional conceptual reticulation models) was found to be quite poor.

Keywords: Artificial Neural Networks, Back-propagationlearning, Combined sewer overflows, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
4502 Faster FPGA Routing Solution using DNA Computing

Authors: Manpreet Singh, Parvinder Singh Sandhu, Manjinder Singh Kahlon

Abstract:

There are many classical algorithms for finding routing in FPGA. But Using DNA computing we can solve the routes efficiently and fast. The run time complexity of DNA algorithms is much less than other classical algorithms which are used for solving routing in FPGA. The research in DNA computing is in a primary level. High information density of DNA molecules and massive parallelism involved in the DNA reactions make DNA computing a powerful tool. It has been proved by many research accomplishments that any procedure that can be programmed in a silicon computer can be realized as a DNA computing procedure. In this paper we have proposed two tier approaches for the FPGA routing solution. First, geometric FPGA detailed routing task is solved by transforming it into a Boolean satisfiability equation with the property that any assignment of input variables that satisfies the equation specifies a valid routing. Satisfying assignment for particular route will result in a valid routing and absence of a satisfying assignment implies that the layout is un-routable. In second step, DNA search algorithm is applied on this Boolean equation for solving routing alternatives utilizing the properties of DNA computation. The simulated results are satisfactory and give the indication of applicability of DNA computing for solving the FPGA Routing problem.

Keywords: FPGA, Routing, DNA Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
4501 Network Coding with Buffer Scheme in Multicast for Broadband Wireless Network

Authors: Gunasekaran Raja, Ramkumar Jayaraman, Rajakumar Arul, Kottilingam Kottursamy

Abstract:

Broadband Wireless Network (BWN) is the promising technology nowadays due to the increased number of smartphones. Buffering scheme using network coding considers the reliability and proper degree distribution in Worldwide interoperability for Microwave Access (WiMAX) multi-hop network. Using network coding, a secure way of transmission is performed which helps in improving throughput and reduces the packet loss in the multicast network. At the outset, improved network coding is proposed in multicast wireless mesh network. Considering the problem of performance overhead, degree distribution makes a decision while performing buffer in the encoding / decoding process. Consequently, BuS (Buffer Scheme) based on network coding is proposed in the multi-hop network. Here the encoding process introduces buffer for temporary storage to transmit packets with proper degree distribution. The simulation results depend on the number of packets received in the encoding/decoding with proper degree distribution using buffering scheme.

Keywords: Encoding and decoding, buffer, network coding, degree distribution, broadband wireless networks, multicast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
4500 Effects of Polluted Water on the Metallic Water Pipelines

Authors: Abdul-Khaliq M. Hussain, Bashir A. Tantosh, El-Sadeg A. Abdalla

Abstract:

Corrosion of metallic water pipelines buried below ground surface is a function of the nature of the surrounding soil and groundwater. This gives the importance of knowing the physical and chemical characteristics of the pipe-s surrounding environment. The corrosion of externally – unprotected metallic water pipelines, specially ductile iron pipes, in localities with aggressive soil conditions is becoming a significant problem. Anticorrosive protection for metallic water pipelines, their fittings and accessories is very important, because they may be attached by corrosion with time. The tendency of a metallic substrate to corrode is a function of the surface characteristics of the metal and of the metal/protective film interface, the physical, electrical and electrochemical properties of the film, and the nature of the environment in which the pipelines system is placed. In this work the authors have looked at corrosion problems of water pipelines and their control. The corrosive properties of groundwater and soil environments are reviewed, and parameters affecting corrosion are discussed. The purpose of this work is to provide guidelines for materials selection in water and soil environments, and how the water pipelines can be protected against metallic corrosion.

Keywords: Corrosion, Drinking Water, Metallic WaterPipelines, Polluted Water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
4499 The Mechanism Study of Degradative Solvent Extraction of Biomass by Liquid Membrane-Fourier Transform Infrared Spectroscopy

Authors: W. Ketren, J. Wannapeera, Z. Heishun, A. Ryuichi, K. Toshiteru, M. Kouichi, O. Hideaki

Abstract:

Degradative solvent extraction is the method developed for biomass upgrading by dewatering and fractionation of biomass under the mild condition. However, the conversion mechanism of the degradative solvent extraction method has not been fully understood so far. The rice straw was treated in 1-methylnaphthalene (1-MN) at a different solvent-treatment temperature varied from 250 to 350 oC with the residence time for 60 min. The liquid membrane-Fourier Transform Infrared Spectroscopy (FTIR) technique is applied to study the processing mechanism in-depth without separation of the solvent. It has been found that the strength of the oxygen-hydrogen stretching  (3600-3100 cm-1) decreased slightly with increasing temperature in the range of 300-350 oC. The decrease of the hydroxyl group in the solvent soluble suggested dehydration reaction taking place between 300 and 350 oC. FTIR spectra in the carbonyl stretching region (1800-1600 cm-1) revealed the presence of esters groups, carboxylic acid and ketonic groups in the solvent-soluble of biomass. The carboxylic acid increased in the range of 200 to 250 oC and then decreased. The prevailing of aromatic groups showed that the aromatization took place during extraction at above 250 oC. From 300 to 350 oC, the carbonyl functional groups in the solvent-soluble noticeably decreased. The removal of the carboxylic acid and the decrease of esters into the form of carbon dioxide indicated that the decarboxylation reaction occurred during the extraction process.

Keywords: Biomass upgrading, liquid membrane-Fourier transform infrared spectroscopy, FTIR, degradative solvent extraction, mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1033
4498 Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology

Authors: Jagadish H. Pujar, Pallavi S. Gurjal, Shambhavi D. S, Kiran S. Kunnur

Abstract:

Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.

Keywords: Image Segmentation, Image smoothing, Edge Detection, Impulsive noise, Gaussian noise, Median filter, Canny edge, Eigen values, Eigen vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
4497 Geosynthetic Reinforced Unpaved Road: Literature Study and Design Example

Authors: D. Jayalakshmi, S. Bhosale

Abstract:

This paper, in its first part, presents the state-of-the-art literature of design approaches for geosynthetic reinforced unpaved roads. The literature starting since 1970 and the critical appraisal of flexible pavement design by Giroud and Han (2004) and Jonathan Fannin (2006) is presented. The design example is illustrated for Indian conditions. The example emphasizes the results computed by Giroud and Han's (2004) design method with the Indian road congress guidelines by IRC SP 72 -2015. The input data considered are related to the subgrade soil condition of Maharashtra State in India. The unified soil classification of the subgrade soil is inorganic clay with high plasticity (CH), which is expansive with a California bearing ratio (CBR) of 2% to 3%. The example exhibits the unreinforced case and geotextile as reinforcement by varying the rut depth from 25 mm to 100 mm. The present result reveals the base thickness for the unreinforced case from the IRC design catalogs is in good agreement with Giroud and Han (2004) approach for a range of 75 mm to 100 mm rut depth. Since Giroud and Han (2004) method is applicable for both reinforced and unreinforced cases, for the same data with appropriate Nc factor, for the same rut depth, the base thickness for the reinforced case has arrived for the Indian condition. From this trial, for the CBR of 2%, the base thickness reduction due to geotextile inclusion is 35%. For the CBR range of 2% to 5% with different stiffness in geosynthetics, the reduction in base course thickness will be evaluated, and the validation will be executed by the full-scale accelerated pavement testing set up at the College of Engineering Pune (COE), India.

Keywords: Base thickness, design approach, equation, full scale accelerated pavement set up, Indian condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
4496 Sustainable Urban Transport Management and Its Strategies

Authors: Touba Amirazodi

Abstract:

Rapid process of urbanism development has increased the demand for some infrastructures such as supplying potable water, electricity network and transportation facilities and etc. Nonefficiency of the existing system with parallel managements of urban traffic management has increased the gap between supply and demand of traffic facilities. A sustainable transport system requires some activities more important than air pollution control, traffic or fuel consumption reduction and the studies show that there is no unique solution for solving complicated transportation problems and solving such a problem needs a comprehensive, dynamic and reliable mechanism. Sustainable transport management considers the effects of transportation development on economic efficiency, environmental issues, resources consumption, land use and social justice and helps reduction of environmental effects, increase of transportation system efficiency as well as improvement of social life and aims to enhance efficiency, goods transportation, provide services with minimum access problems that cannot be realized without reorganization of strategies, policies and plans.

Keywords: Sustainable Urban Transport, Environment, Social Justice, Air Pollution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536
4495 Differences in the Perception of Behavior Problems in Pre-school Children among the Teachers and Parents

Authors: Jana Kožárová

Abstract:

Even the behavior problems in pre-school children might be considered as a transitional problem which may disappear by their transition into elementary school; it is an issue that needs a lot of attention because of the fact that the behavioral patterns are adopted in the children especially in this age. Common issue in the process of elimination of the behavior problems in the group of pre-school children is a difference in the perception of the importance and gravity of the symptoms. The underestimation of the children's problems by parents often result into conflicts with kindergarten teachers. Thus, the child does not get the support that his/her problems require and this might result into a school failure and can negatively influence his/her future school performance and success. The research sample consisted of 4 children with behavior problems, their teachers and parents. To determine the most problematic area in the child's behavior, Child Behavior Checklist (CBCL) filled by parents and Caregiver/Teacher Form (CTF-R) filled by teachers were used. Scores from the CBCL and the CTR-F were compared with Pearson correlation coefficient in order to find the differences in the perception of behavior problems in pre-school children.

Keywords: Behavior problems, child behavior checklist, caregiver/teacher form, Pearson correlation coefficient, pre-school age.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
4494 Frequency Response of Complex Systems with Localized Nonlinearities

Authors: E. Menga, S. Hernandez

Abstract:

Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.

Keywords: Frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
4493 MIMO-OFDM Channel Tracking Using a Dynamic ANN Topology

Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma

Abstract:

All the available algorithms for blind estimation namely constant modulus algorithm (CMA), Decision-Directed Algorithm (DDA/DFE) suffer from the problem of convergence to local minima. Also, if the channel drifts considerably, any DDA looses track of the channel. So, their usage is limited in varying channel conditions. The primary limitation in such cases is the requirement of certain overhead bits in the transmit framework which leads to wasteful use of the bandwidth. Also such arrangements fail to use channel state information (CSI) which is an important aid in improving the quality of reception. In this work, the main objective is to reduce the overhead imposed by the pilot symbols, which in effect reduces the system throughput. Also we formulate an arrangement based on certain dynamic Artificial Neural Network (ANN) topologies which not only contributes towards the lowering of the overhead but also facilitates the use of the CSI. A 2×2 Multiple Input Multiple Output (MIMO) system is simulated and the performance variation with different channel estimation schemes are evaluated. A new semi blind approach based on dynamic ANN is proposed for channel tracking in varying channel conditions and the performance is compared with perfectly known CSI and least square (LS) based estimation.

Keywords: MIMO, Artificial Neural Network (ANN), CMA, LS, CSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377
4492 Improved Estimation of Evolutionary Spectrum based on Short Time Fourier Transforms and Modified Magnitude Group Delay by Signal Decomposition

Authors: H K Lakshminarayana, J S Bhat, H M Mahesh

Abstract:

A new estimator for evolutionary spectrum (ES) based on short time Fourier transform (STFT) and modified group delay function (MGDF) by signal decomposition (SD) is proposed. The STFT due to its built-in averaging, suppresses the cross terms and the MGDF preserves the frequency resolution of the rectangular window with the reduction in the Gibbs ripple. The present work overcomes the magnitude distortion observed in multi-component non-stationary signals with STFT and MGDF estimation of ES using SD. The SD is achieved either through discrete cosine transform based harmonic wavelet transform (DCTHWT) or perfect reconstruction filter banks (PRFB). The MGDF also improves the signal to noise ratio by removing associated noise. The performance of the present method is illustrated for cross chirp and frequency shift keying (FSK) signals, which indicates that its performance is better than STFT-MGDF (STFT-GD) alone. Further its noise immunity is better than STFT. The SD based methods, however cannot bring out the frequency transition path from band to band clearly, as there will be gap in the contour plot at the transition. The PRFB based STFT-SD shows good performance than DCTHWT decomposition method for STFT-GD.

Keywords: Evolutionary Spectrum, Modified Group Delay, Discrete Cosine Transform, Harmonic Wavelet Transform, Perfect Reconstruction Filter Banks, Short Time Fourier Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
4491 A Study about the Distribution of the Spanning Ratios of Yao Graphs

Authors: Maryam Hsaini, Mostafa Nouri-Baygi

Abstract:

A critical problem in wireless sensor networks is limited battery and memory of nodes. Therefore, each node in the network could maintain only a subset of its neighbors to communicate with. This will increase the battery usage in the network because each packet should take more hops to reach its destination. In order to tackle these problems, spanner graphs are defined. Since each node has a small degree in a spanner graph and the distance in the graph is not much greater than its actual geographical distance, spanner graphs are suitable candidates to be used for the topology of a wireless sensor network. In this paper, we study Yao graphs and their behavior for a randomly selected set of points. We generate several random point sets and compare the properties of their Yao graphs with the complete graph. Based on our data sets, we obtain several charts demonstrating how Yao graphs behave for a set of randomly chosen point set. As the results show, the stretch factor of a Yao graph follows a normal distribution. Furthermore, the stretch factor is in average far less than the worst case stretch factor proved for Yao graphs in previous results. Furthermore, we use Yao graph for a realistic point set and study its stretch factor in real world.

Keywords: Wireless sensor network, spanner graph, Yao Graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 606
4490 A Materialized View Approach to Support Aggregation Operations over Long Periods in Sensor Networks

Authors: Minsoo Lee, Julee Choi, Sookyung Song

Abstract:

The increasing interest on processing data created by sensor networks has evolved into approaches to implement sensor networks as databases. The aggregation operator, which calculates a value from a large group of data such as computing averages or sums, etc. is an essential function that needs to be provided when implementing such sensor network databases. This work proposes to add the DURING clause into TinySQL to calculate values during a specific long period and suggests a way to implement the aggregation service in sensor networks by applying materialized view and incremental view maintenance techniques that is used in data warehouses. In sensor networks, data values are passed from child nodes to parent nodes and an aggregation value is computed at the root node. As such root nodes need to be memory efficient and low powered, it becomes a problem to recompute aggregate values from all past and current data. Therefore, applying incremental view maintenance techniques can reduce the memory consumption and support fast computation of aggregate values.

Keywords: Aggregation, Incremental View Maintenance, Materialized view, Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
4489 Daemon- Based Distributed Deadlock Detection and Resolution

Authors: Z. RahimAlipour, A. T. Haghighat

Abstract:

detecting the deadlock is one of the important problems in distributed systems and different solutions have been proposed for it. Among the many deadlock detection algorithms, Edge-chasing has been the most widely used. In Edge-chasing algorithm, a special message called probe is made and sent along dependency edges. When the initiator of a probe receives the probe back the existence of a deadlock is revealed. But these algorithms are not problem-free. One of the problems associated with them is that they cannot detect some deadlocks and they even identify false deadlocks. A key point not mentioned in the literature is that when the process is waiting to obtain the required resources and its execution has been blocked, how it can actually respond to probe messages in the system. Also the question of 'which process should be victimized in order to achieve a better performance when multiple cycles exist within one single process in the system' has received little attention. In this paper, one of the basic concepts of the operating system - daemon - will be used to solve the problems mentioned. The proposed Algorithm becomes engaged in sending probe messages to the mandatory daemons and collects enough information to effectively identify and resolve multi-cycle deadlocks in distributed systems.

Keywords: Distributed system, distributed deadlock detectionand resolution, daemon, false deadlock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
4488 Socio-Economic Determinants of Physical Activity of Non-Manual Workers, Including the Early Senior Group, from the City of Wroclaw in Poland

Authors: Daniel Puciato, Piotr Oleśniewicz, Julita Markiewicz-Patkowska, Krzysztof Widawski, Michał Rozpara, Władysław Mynarski, Agnieszka Gawlik, Małgorzata Dębska, Soňa Jandová

Abstract:

Physical activity as a part of people’s everyday life reduces the risk of many diseases, including those induced by lifestyle, e.g. obesity, type 2 diabetes, osteoporosis, coronary heart disease, degenerative arthritis, and certain types of cancer. That refers particularly to professionally active people, including the early senior group working on non-manual positions. The aim of the study is to evaluate the relationship between physical activity and the socio-economic status of non-manual workers from Wroclaw—one of the biggest cities in Poland, a model setting for such investigations in this part of Europe. The crucial problem in the research is to find out the percentage of respondents who meet the health-related recommendations of the World Health Organization (WHO) concerning the volume, frequency, and intensity of physical activity, as well as to establish if the most important socio-economic factors, such as gender, age, education, marital status, per capita income, savings and debt, determine the compliance with the WHO physical activity recommendations. During the research, conducted in 2013, 1,170 people (611 women and 559 men) aged 21–60 years were examined. A diagnostic poll method was applied to collect the data. Physical activity was measured with the use of the short form of the International Physical Activity Questionnaire with extended socio-demographic questions, i.e. concerning gender, age, education, marital status, income, savings or debts. To evaluate the relationship between physical activity and selected socio-economic factors, logistic regression was used (odds ratio statistics). Statistical inference was conducted on the adopted ex ante probability level of p<0.05. The majority of respondents met the volume of physical effort recommended for health benefits. It was particularly noticeable in the case of the examined men. The probability of compliance with the WHO physical activity recommendations was highest for workers aged 21–30 years with secondary or higher education who were single, received highest incomes and had savings. The results indicate the relations between physical activity and socio-economic status in the examined women and men. People with lower socio-economic status (e.g. manual workers) are physically active primarily at work, whereas those better educated and wealthier implement physical effort primarily in their leisure time. Among the investigated subjects, the youngest group of non-manual workers have the best chances to meet the WHO standards of physical activity. The study also confirms that secondary education has a positive effect on the public awareness on the role of physical activity in human life. In general, the analysis of the research indicates that there is a relationship between physical activity and some socio-economic factors of the respondents, such as gender, age, education, marital status, income per capita, and the possession of savings. Although the obtained results cannot be applied for the general population, they show some important trends that will be verified in subsequent studies conducted by the authors of the paper.

Keywords: International physical activity questionnaire, non-manual workers, physical activity, socio-economic factors, WHO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
4487 Aeration Optimization in an Activated Sludge Wastewater Treatment Plant Based on CFD Method: A Case Study

Authors: Seyed Sina Khamesi, Rana Rafiei

Abstract:

The extensive aeration process is widely used for wastewater treatment. However, due to the high energy consumption of this process, which is closely related to the issues of environmental sustainability and global climate change, this article presents a simple solution to reduce energy consumption in this process. The amount of required energy is one of the critical considerations for various wastewater treatment techniques. For this purpose, an industrial wastewater treatment plant and all energy-consumer equipment in terms of energy consumption have been analyzed. The investigations and measurements revealed that the aeration unit has the highest energy consumption rate. To address this, an innovative approach is proposed to reduce energy consumption in the identified high-consumer unit. The proposed solution involves introducing baffles to divide the tank into multiple parts and using a tank with a small width and long length to enhance the mixing process. This approach reduces the need for additional equipment and significantly lowers energy consumption. To thoroughly scrutinize the proposed solution and analyze the behavior of the multi-phase fluid inside the tank, the sewage flow has been modeled using the computational fluid dynamics (CFD) method. The study presents an optimal design for the aeration unit based on these findings. The results indicate that implementing the technique suggested in this article can decrease total energy consumption by 33.15% and can be applied to all types of biological treatment plants.

Keywords: Wastewater treatment, aeration, energy consumption, Computational Fluid Dynamics, activated sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 377
4486 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation

Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling

Abstract:

The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.

Keywords: Aero-thermo-elasticity, elastic deformation, structural temperature, multi-field coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899
4485 Distributed Estimation Using an Improved Incremental Distributed LMS Algorithm

Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili

Abstract:

In this paper we consider the problem of distributed adaptive estimation in wireless sensor networks for two different observation noise conditions. In the first case, we assume that there are some sensors with high observation noise variance (noisy sensors) in the network. In the second case, different variance for observation noise is assumed among the sensors which is more close to real scenario. In both cases, an initial estimate of each sensor-s observation noise is obtained. For the first case, we show that when there are such sensors in the network, the performance of conventional distributed adaptive estimation algorithms such as incremental distributed least mean square (IDLMS) algorithm drastically decreases. In addition, detecting and ignoring these sensors leads to a better performance in a sense of estimation. In the next step, we propose a simple algorithm to detect theses noisy sensors and modify the IDLMS algorithm to deal with noisy sensors. For the second case, we propose a new algorithm in which the step-size parameter is adjusted for each sensor according to its observation noise variance. As the simulation results show, the proposed methods outperforms the IDLMS algorithm in the same condition.

Keywords: Distributes estimation, sensor networks, adaptive filter, IDLMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
4484 Computer Aided X-Ray Diffraction Intensity Analysis for Spinels: Hands-On Computing Experience

Authors: Ashish R. Tanna, Hiren H. Joshi

Abstract:

The mineral having chemical compositional formula MgAl2O4 is called “spinel". The ferrites crystallize in spinel structure are known as spinel-ferrites or ferro-spinels. The spinel structure has a fcc cage of oxygen ions and the metallic cations are distributed among tetrahedral (A) and octahedral (B) interstitial voids (sites). The X-ray diffraction (XRD) intensity of each Bragg plane is sensitive to the distribution of cations in the interstitial voids of the spinel lattice. This leads to the method of determination of distribution of cations in the spinel oxides through XRD intensity analysis. The computer program for XRD intensity analysis has been developed in C language and also tested for the real experimental situation by synthesizing the spinel ferrite materials Mg0.6Zn0.4AlxFe2- xO4 and characterized them by X-ray diffractometry. The compositions of Mg0.6Zn0.4AlxFe2-xO4(x = 0.0 to 0.6) ferrites have been prepared by ceramic method and powder X-ray diffraction patterns were recorded. Thus, the authenticity of the program is checked by comparing the theoretically calculated data using computer simulation with the experimental ones. Further, the deduced cation distributions were used to fit the magnetization data using Localized canting of spins approach to explain the “recovery" of collinear spin structure due to Al3+ - substitution in Mg-Zn ferrites which is the case if A-site magnetic dilution and non-collinear spin structure. Since the distribution of cations in the spinel ferrites plays a very important role with regard to their electrical and magnetic properties, it is essential to determine the cation distribution in spinel lattice.

Keywords: Spinel ferrites, Localized canting of spins, X-ray diffraction, Programming in Borland C.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3814
4483 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

Authors: Ahmad Fahim Nasiry, Shigeo Honma

Abstract:

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

Keywords: Numerical simulation, immiscible, finite difference, IADI, IADE, waterflooding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
4482 Attribute Weighted Class Complexity: A New Metric for Measuring Cognitive Complexity of OO Systems

Authors: Dr. L. Arockiam, A. Aloysius

Abstract:

In general, class complexity is measured based on any one of these factors such as Line of Codes (LOC), Functional points (FP), Number of Methods (NOM), Number of Attributes (NOA) and so on. There are several new techniques, methods and metrics with the different factors that are to be developed by the researchers for calculating the complexity of the class in Object Oriented (OO) software. Earlier, Arockiam et.al has proposed a new complexity measure namely Extended Weighted Class Complexity (EWCC) which is an extension of Weighted Class Complexity which is proposed by Mishra et.al. EWCC is the sum of cognitive weights of attributes and methods of the class and that of the classes derived. In EWCC, a cognitive weight of each attribute is considered to be 1. The main problem in EWCC metric is that, every attribute holds the same value but in general, cognitive load in understanding the different types of attributes cannot be the same. So here, we are proposing a new metric namely Attribute Weighted Class Complexity (AWCC). In AWCC, the cognitive weights have to be assigned for the attributes which are derived from the effort needed to understand their data types. The proposed metric has been proved to be a better measure of complexity of class with attributes through the case studies and experiments

Keywords: Software Complexity, Attribute Weighted Class Complexity, Weighted Class Complexity, Data Type

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
4481 A Learning-Community Recommendation Approach for Web-Based Cooperative Learning

Authors: Jian-Wei Li, Yao-Tien Wang, Yi-Chun Chang

Abstract:

Cooperative learning has been defined as learners working together as a team to solve a problem to complete a task or to accomplish a common goal, which emphasizes the importance of interactions among members to promote the whole learning performance. With the popularity of society networks, cooperative learning is no longer limited to traditional classroom teaching activities. Since society networks facilitate to organize online learners, to establish common shared visions, and to advance learning interaction, the online community and online learning community have triggered the establishment of web-based societies. Numerous research literatures have indicated that the collaborative learning community is a critical issue to enhance learning performance. Hence, this paper proposes a learning community recommendation approach to facilitate that a learner joins the appropriate learning communities, which is based on k-nearest neighbor (kNN) classification. To demonstrate the viability of the proposed approach, the proposed approach is implemented for 117 students to recommend learning communities. The experimental results indicate that the proposed approach can effectively recommend appropriate learning communities for learners.

Keywords: k-nearest neighbor classification, learning community, Cooperative/Collaborative Learning and Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
4480 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: Active linear control, Lyapunov stability theorem, piezoelectricity, smart structure, static deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
4479 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning

Authors: Yasaswi Palagummi, Sareh Rowlands

Abstract:

Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GZSL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets - AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.

Keywords: Generalised Zero-shot Learning, Inductive Learning, Shifted-Window Attention, Swin Transformer, Vision Transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240
4478 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: Feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629
4477 Novel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision

Authors: Maohai Li, Bingrong Hong, Zesu Cai, Ronghua Luo

Abstract:

This paper presents the novel Rao-Blackwellised particle filter (RBPF) for mobile robot simultaneous localization and mapping (SLAM) using monocular vision. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark position estimation and update is also implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which seriously reduces the particle depletion problem, and introducing the evolution strategies (ES) for avoiding particle impoverishment. The 3D natural point landmarks are structured with matching Scale Invariant Feature Transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-Tree in the time cost of O(log2 N). Experiment results on real robot in our indoor environment show the advantages of our methods over previous approaches.

Keywords: Mobile robot, simultaneous localization and mapping, Rao-Blackwellised particle filter, evolution strategies, scale invariant feature transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
4476 Optimal Economic Restructuring Aimed at an Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions

Authors: Alexander Y. Vaninsky

Abstract:

The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.

Keywords: Economic restructuring, Input-Output analysis, Divisia index, Factorial decomposition, E3 models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612