Search results for: material models
3741 On Four Models of a Three Server Queue with Optional Server Vacations
Authors: Kailash C. Madan
Abstract:
We study four models of a three server queueing system with Bernoulli schedule optional server vacations. Customers arriving at the system one by one in a Poisson process are provided identical exponential service by three parallel servers according to a first-come, first served queue discipline. In model A, all three servers may be allowed a vacation at one time, in Model B at the most two of the three servers may be allowed a vacation at one time, in model C at the most one server is allowed a vacation, and in model D no server is allowed a vacation. We study steady the state behavior of the four models and obtain steady state probability generating functions for the queue size at a random point of time for all states of the system. In model D, a known result for a three server queueing system without server vacations is derived.Keywords: A three server queue, Bernoulli schedule server vacations, queue size distribution at a random epoch, steady state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13853740 Simulating Action Potential as a Linear Combination of Gating Dynamics
Authors: S. H. Sabzpoushan
Abstract:
In this research we show that the dynamics of an action potential in a cell can be modeled with a linear combination of the dynamics of the gating state variables. It is shown that the modeling error is negligible. Our findings can be used for simplifying cell models and reduction of computational burden i.e. it is useful for simulating action potential propagation in large scale computations like tissue modeling. We have verified our finding with the use of several cell models.
Keywords: Linear model, Action potential, gating dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12753739 Self-Healing Performance of Heavyweight Concrete with Steam Curing
Authors: Hideki Igawa, Yoshinori Kitsutaka, Takashi Yokomuro, Hideo Eguchi
Abstract:
In this study, the crack self-healing performance of the heavyweight concrete used in the walls of containers and structures designed to shield radioactive materials was investigated. A steam curing temperature that preserves self-healing properties and demolding strength was identified. The presented simultaneously mixing method using the expanding material and the fly ash in the process of admixture can maximize the self-curing performance. Also adding synthetic fibers in the heavyweight concrete improved the self-healing performance.
Keywords: Expanding material, heavyweight concrete, self-healing performance, synthetic fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12453738 Averaging Model of a Three-Phase Controlled Rectifier Feeding an Uncontrolled Buck Converter
Authors: P. Ruttanee, K-N. Areerak, K-L. Areerak
Abstract:
Dynamic models of power converters are normally time-varying because of their switching actions. Several approaches are applied to analyze the power converters to achieve the timeinvariant models suitable for system analysis and design via the classical control theory. The paper presents how to derive dynamic models of the power system consisting of a three-phase controlled rectifier feeding an uncontrolled buck converter by using the combination between the well known techniques called the DQ and the generalized state-space averaging methods. The intensive timedomain simulations of the exact topology model are used to support the accuracies of the reported model. The results show that the proposed model can provide good accuracies in both transient and steady-state responses.Keywords: DQ method, Generalized state-space averaging method, Three-phase controlled rectifier, Uncontrolled buck converter, Averaging model, Modeling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38213737 Planning a Supply Chain with Risk and Environmental Objectives
Authors: Ghanima Al-Sharrah, Haitham M. Lababidi, Yusuf I. Ali
Abstract:
The main objective of the current work is to introduce sustainability factors in optimizing the supply chain model for process industries. The supply chain models are normally based on purely economic considerations related to costs and profits. To account for sustainability, two additional factors have been introduced; environment and risk. A supply chain for an entire petroleum organization has been considered for implementing and testing the proposed optimization models. The environmental and risk factors were introduced as indicators reflecting the anticipated impact of the optimal production scenarios on sustainability. The aggregation method used in extending the single objective function to multi-objective function is proven to be quite effective in balancing the contribution of each objective term. The results indicate that introducing sustainability factor would slightly reduce the economic benefit while improving the environmental and risk reduction performances of the process industries.Keywords: Supply chain, optimization, LP models, risk, environmental indicators, multi-objective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15003736 Effects of Material Properties of Warhead Casing on Natural Fragmentation Performance of High Explosive (HE) Warhead
Authors: G. Tanapornraweekit, W. Kulsirikasem
Abstract:
This research paper presents numerical studies of the characteristics of warhead fragmentation in terms of initial velocities, spray angles of fragments and fragment mass distribution of high explosive (HE) warhead. The behavior of warhead fragmentation depends on shape and size of warhead, thickness of casing, type of explosive, number and position of detonator, and etc. This paper focuses on the effects of material properties of warhead casing, i.e. failure strain, initial yield and ultimate strength on the characteristics of warhead fragmentation. It was found that initial yield and ultimate strength of casing has minimal effects on the initial velocities and spray angles of fragments. Moreover, a brittle warhead casing with low failure strain tends to produce higher number of fragments with less average fragment mass.Keywords: Detonation, Material Properties, Natural Fragment, Warhead
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37513735 Effects of Humidity and Silica Sand Particles on Vibration Generation by Friction Materials of Automotive Brake System
Authors: Mostafa M. Makrahy, Nouby M. Ghazaly, G. T. Abd el-Jaber
Abstract:
This paper presents the experimental study of vibration generated by friction materials of an automotive disc brake system using brake test rig. Effects of silica sand particles which are available on the road surface as an environmental condition with a size varied from 150 μm to 600 μm are evaluated. Also, the vibration of the brake disc is examined against the friction material in humidity environment conditions under variable rotational speed. The experimental results showed that the silica sand particles have significant contribution on the value of vibration amplitude which enhances with increasing the size of silica sand particles at different speed conditions. Also, it is noticed that the friction material is sensitive to humidity and the vibration magnitude increases under wet testing conditions. Moreover, it can be reported that with increasing the applied pressure and rotational speed of the braking system, the vibration amplitudes decrease for all cases.
Keywords: Friction material, silica sand particles, humidity environment, vibration of brake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8093734 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux
Authors: D Bhargavi, J. Sharath Kumar Reddy
Abstract:
The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.
Keywords: Porous material, channel partially filled with a porous material, axial conduction, viscous dissipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6383733 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel
Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren
Abstract:
Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.
Keywords: Flywheel energy storage, fuzzy, optimization, stress analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9633732 Ranking Alternatives in Multi-Criteria Decision Analysis using Common Weights Based on Ideal and Anti-ideal Frontiers
Authors: Saber Saati Mohtadi, Ali Payan, Azizallah Kord
Abstract:
One of the most important issues in multi-criteria decision analysis (MCDA) is to determine the weights of criteria so that all alternatives can be compared based on the collective performance of criteria. In this paper, one of popular methods in data envelopment analysis (DEA) known as common weights (CWs) is used to determine the weights in MCDA. Two frontiers named ideal and anti-ideal frontiers, instead of ideal and anti-ideal alternatives, are defined based on two new proposed CWs models. Ideal and antiideal frontiers are more flexible than that of alternatives. According to the optimal solutions of these two models, the distances of an alternative from the ideal and anti-ideal frontiers are derived. Then, a relative distance is introduced to measure the value of each alternative. The suggested models are linear and despite weight restrictions are feasible. An example is presented for explaining the method and for comparing to the existing literature.
Keywords: Anti-ideal frontier, Common weights (CWs), Ideal frontier, Multi-criteria decision analysis (MCDA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18913731 A New Quantile Based Fuzzy Time Series Forecasting Model
Authors: Tahseen A. Jilani, Aqil S. Burney, C. Ardil
Abstract:
Time series models have been used to make predictions of academic enrollments, weather, road accident, casualties and stock prices, etc. Based on the concepts of quartile regression models, we have developed a simple time variant quantile based fuzzy time series forecasting method. The proposed method bases the forecast using prediction of future trend of the data. In place of actual quantiles of the data at each point, we have converted the statistical concept into fuzzy concept by using fuzzy quantiles using fuzzy membership function ensemble. We have given a fuzzy metric to use the trend forecast and calculate the future value. The proposed model is applied for TAIFEX forecasting. It is shown that proposed method work best as compared to other models when compared with respect to model complexity and forecasting accuracy.
Keywords: Quantile Regression, Fuzzy time series, fuzzy logicalrelationship groups, heuristic trend prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19973730 Comparison of Fundamental Frequency Model and PWM Based Model of UPFC
Authors: S.A. Al-Qallaf, S.A. Al-Mawsawi, A. Haider
Abstract:
Among all FACTS devices, the unified power flow controller (UPFC) is considered to be the most versatile device. This is due to its capability to control all the transmission system parameters (impedance, voltage magnitude, and phase angle). With the growing interest in UPFC, the attention to develop a mathematical model has increased. Several models were introduced for UPFC in literature for different type of studies in power systems. In this paper a novel comparison study between two dynamic models of UPFC with their proposed control strategies.
Keywords: FACTS, UPFC, Dynamic Modeling, PWM, Fundamental Frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22203729 On the Application of Meta-Design Techniques in Hardware Design Domain
Authors: R. Damaševičius
Abstract:
System-level design based on high-level abstractions is becoming increasingly important in hardware and embedded system design. This paper analyzes meta-design techniques oriented at developing meta-programs and meta-models for well-understood domains. Meta-design techniques include meta-programming and meta-modeling. At the programming level of design process, metadesign means developing generic components that are usable in a wider context of application than original domain components. At the modeling level, meta-design means developing design patterns that describe general solutions to the common recurring design problems, and meta-models that describe the relationship between different types of design models and abstractions. The paper describes and evaluates the implementation of meta-design in hardware design domain using object-oriented and meta-programming techniques. The presented ideas are illustrated with a case study.Keywords: Design patterns, meta-design, meta-modeling, metaprogramming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23143728 Thermal Stability Boundary of FG Panel under Aerodynamic Load
Authors: Sang-Lae Lee, Ji-Hwan Kim
Abstract:
In this study, it is investigated the stability boundary of Functionally Graded (FG) panel under the heats and supersonic airflows. Material properties are assumed to be temperature dependent, and a simple power law distribution is taken. First-order shear deformation theory (FSDT) of plate is applied to model the panel, and the von-Karman strain- displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Further, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel and Rayleigh damping coefficient is used to present the structural damping. In order to find a critical value of the speed, linear flutter analysis of FG panels is performed. Numerical results are compared with the previous works, and present results for the temperature dependent material are discussed in detail for stability boundary of the panel with various volume fractions, and aerodynamic pressures.Keywords: Functionally graded panels, Linear flutter analysis, Supersonic airflows, Temperature dependent material property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15933727 Peakwise Smoothing of Data Models using Wavelets
Authors: D Sudheer Reddy, N Gopal Reddy, P V Radhadevi, J Saibaba, Geeta Varadan
Abstract:
Smoothing or filtering of data is first preprocessing step for noise suppression in many applications involving data analysis. Moving average is the most popular method of smoothing the data, generalization of this led to the development of Savitzky-Golay filter. Many window smoothing methods were developed by convolving the data with different window functions for different applications; most widely used window functions are Gaussian or Kaiser. Function approximation of the data by polynomial regression or Fourier expansion or wavelet expansion also gives a smoothed data. Wavelets also smooth the data to great extent by thresholding the wavelet coefficients. Almost all smoothing methods destroys the peaks and flatten them when the support of the window is increased. In certain applications it is desirable to retain peaks while smoothing the data as much as possible. In this paper we present a methodology called as peak-wise smoothing that will smooth the data to any desired level without losing the major peak features.Keywords: smoothing, moving average, peakwise smoothing, spatialdensity models, planar shape models, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17503726 Indications and Characteristics of Clinical Application of Periodontal Suturing
Authors: Saimir Heta, Ilma Robo, Vera Ostreni, Glorja Demika, Sonila Kapaj
Abstract:
Suturing, as a procedure of joining the lips of the lembo or wound, is important at the beginning of the healing process. This procedure helps to pass the healing process from the procedure per secundam to the stages of healing per primam, thus logically reducing the healing time of the wound. The purpose of this article is to publish some data on the clinical characteristics of periodontal suturing, presenting the advantages and disadvantages of different types of suture threads. The article is a mini-review type of articles selected from the application of keywords on the PubMed page. The number of articles extracted from this article publication page is in accordance with the 10-year publication time limit. The element that remains in the individual selection of the dentist applying the suture is the selection of the suture material. At a moment when some types of sutures are offered for use, some elements should be considered in the selection of the suture depending on the constituent material, the cross-section of the suture elements, and whether it collects bacteria in the "pits" created by the material. The presence of bacteria is a source of infection and possible delay in the healing of the sutured wound. The marketing of suture types offers a variety of materials, from which the selection of the most suitable suture type for specific application cases is a personal indication of the dental surgeon based on professional experiences and knowledge in this field.
Keywords: Suture, suture material, types of sutures, clinical application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463725 Modeling the Effect of Thermal Gradation on Steady-State Creep Behavior of Isotropic Rotating Disc Made of Functionally Graded Material
Authors: Tania Bose, Minto Rattan, Neeraj Chamoli
Abstract:
In this paper, an attempt has been made to study the effect of thermal gradation on the steady-state creep behavior of rotating isotropic disc made of functionally graded material using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate have been taken for analysis. The stress and strain rate distributions have been calculated for the discs rotating at elevated temperatures having thermal gradation. The material parameters of creep vary radially and have been estimated by regression fit of the available experimental data. Investigations for discs made up of linearly increasing particle content operating under linearly decreasing temperature from inner to outer radii have been done using von Mises’ yield criterion. The results are displayed and compared graphically in designer friendly format for the above said disc profile with the disc made of particle reinforced composite operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.Keywords: Creep, functionally graded isotropic material, steady-state, thermal gradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8143724 Laser Beam Forming of 3 mm Steel Plate and the Evolving Properties
Authors: Stephen Akinlabi, Mukul Shukla, Esther Akinlabi, Marwala Tshilidzi
Abstract:
This paper reports the evolving properties of a 3 mm low carbon steel plate after Laser Beam Forming achieve this objective, the chemical analyse material and the formed components were carried thereafter both were characterized through microhardness profiling microstructural evaluation and tensile testing. showed an increase in the elemental concentration of the component when compared to the as received attributed to the enhancement property of the LBF process Ultimate Tensile Strength (UTS) and the Vickers the formed component shows an increase when compared to the as received material, this was attributed to strain hardening and grain refinement brought about by the LBF process. The microstructure of the as received steel consists of equiaxed ferrit that of the formed component exhibits elongated orming process (LBF). To es of the as received out and compared; profiling, The chemical analyses formed material; this can be process. The microhardness of ferrite and pearlite while grains.
Keywords: Laser beam forming, deformation , deformation, elongated grains
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18933723 The Effect of Multi-Layer Bandage on the Interface Pressure Applied by Compression Bandages
Authors: Jawad Al Khaburi, Abbas A. Dehghani-Sanij, E. Andrea Nelson, Jerry Hutchinson
Abstract:
Medical compression bandages are widely used in the treatment of chronic venous disorder. In order to design effective compression bandages, researchers have attempted to describe the interface pressure applied by multi-layer bandages using mathematical models. This paper reports on the work carried out to compare and validate the mathematical models used to describe the interface pressure applied by multi-layer bandages. Both analytical and experimental results showed that using simple multiplication of a number of bandage layers with the pressure applied by one layer of bandage or ignoring the increase in the limb radius due to former layers of bandage will result in overestimating the pressure. Experimental results showed that the mathematical models, which take into consideration the increase in the limb radius due to former bandage layers, are more accurate than the one which does not.Keywords: Compression bandages, FlexiForce, interface pressure, venous ulcer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27193722 Producing New Composite Materials by Using Tragacanth and Waste Ash
Authors: Yasar Bicer, Serif Yilmaz
Abstract:
In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conductivity decreases with increasing amount of tragacanth in the mixture. The compressive, tensile strength increases when the rate of tragacanth is up to 1%, whilst as the amount of tragacanth increases up to 1.5%, the compressive, tensile strength decreases slightly. The rate of water absorption of samples was more than 30%. From this result, it is concluded that these materials can not be used as external plaster or internal plaster material that faces to water. They can be used in internal plaster unless touching water and they can be used as cover plaster under roof and riprap material in sandwich panels. It is also found that, these materials can be cut with saw, drilled with screw and painted with any kind of paint.Keywords: Fly ash, tragacanth, cement, composite material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17723721 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.
Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513720 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range
Authors: A. Mínguez-Martínez, J. de Vicente
Abstract:
Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. In this paper, we propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments, by applying minor changes.
Keywords: Industrial environment, confocal microscope, optical measuring instrument, traceability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4103719 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium
Authors: Nidhal Jamia, Sami El-Borgi
Abstract:
In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.
Keywords: Functionally graded piezoelectric material, mixed-mode crack, non-local theory, Schmidt method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9983718 Influence of Densification Process and Material Properties on Final Briquettes Quality from Fast-Growing Willows
Authors: Peter Križan, Juraj Beniak, Ľubomír Šooš, Miloš Matúš
Abstract:
Biomass treatment through densification is very suitable and helpful technology before its effective energy recovery. Densification process of biomass is significantly influenced by various technological and material variables, which are ultimately reflected on the final solid biofuels quality. The paper deals with the experimental research of the relationship between technological and material variables during densification of fast-growing trees, roundly fast-growing willows. The main goal of presented experimental research is to determine the relationship between compression pressure and raw material particle size from a final briquettes density point of view. Experimental research was realized by single-axis densification. The impact of particle size with interaction of compression pressure and stabilization time on the quality properties of briquettes was determined. These variables interaction affects the final solid biofuels (briquettes) quality. From briquettes production point of view and from densification machines constructions point of view is very important to know about mutual interaction of these variables on final briquettes quality. The experimental findings presented here are showing the importance of mentioned variables during the densification process.
Keywords: Briquettes density, densification, particle size, compression pressure, stabilization time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17433717 Hydrodynamic Modeling of a Surface Water Treatment Pilot Plant
Authors: C.-M. Militaru, A. Pǎcalǎ, I. Vlaicu, K. Bodor, G.-A. Dumitrel, T. Todinca
Abstract:
A mathematical model for the hydrodynamics of a surface water treatment pilot plant was developed and validated by the determination of the residence time distribution (RTD) for the main equipments of the unit. The well known models of ideal/real mixing, ideal displacement (plug flow) and (one-dimensional axial) dispersion model were combined in order to identify the structure that gives the best fitting of the experimental data for each equipment of the pilot plant. RTD experimental results have shown that pilot plant hydrodynamics can be quite well approximated by a combination of simple mathematical models, structure which is suitable for engineering applications. Validated hydrodynamic models will be further used in the evaluation and selection of the most suitable coagulation-flocculation reagents, optimum operating conditions (injection point, reaction times, etc.), in order to improve the quality of the drinking water.Keywords: drinking water, hydrodynamic modeling, pilot plant, residence time distribution, surface water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16733716 Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process
Authors: Vinod Kumar, Jatinder Kumar
Abstract:
The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.Keywords: Stress, MRR, Flow, Ultrasonic Machining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28103715 Injection Forging of Splines Using Numerical and Experimental Study
Authors: M.Zadshakoyan, H.Jafarzadeh, E.Abdi Sobbouhi
Abstract:
Injection forging is a Nett-shape manufacturing process in which one or two punches move axially causing a radial flow into a die cavity in a form which is prescribed by the exitgeometry, such as pulley, flanges, gears and splines on a shaft. This paper presents an experimental and numerical study of the injection forging of splines in terms of load requirement and material flow. Three dimensional finite element analyses are used to investigate the effect of some important parameters in this process. The experiment has been carried out using solid commercial lead billets with two different billet diameters and four different dies.Keywords: Injection forging, splines, material flow, FEM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17753714 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models
Authors: Rossella Arcucci, Luisa D’Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti
Abstract:
This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.Keywords: Data Assimilation, Parallel Algorithm, GPU architectures, Ocean Models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20113713 User-s Hand Effect on TIS of Different GSM900/1800 Mobile Phone Models Using FDTD Method
Authors: Salah I. Al-Mously, Marai M. Abousetta
Abstract:
This paper predicts the effect of the user-s hand-hold position on the Total Isotropic Sensitivity (TIS) of GSM900/1800 mobile phone antennas of realistic in-use conditions, where different semi-realistic mobile phone models, i.e., candy bar and clamshell, as well as different antenna types, i.e., external and internal, are simulated using a FDTD-based platform. A semi-realistic hand model consisting of three tissues and the SAM head are used in simulations. The results show a considerable impact on TIS of the adopted mobile phone models owing to the user-s hand presence at different positions, where a maximum level of TIS is obtained while grasping the upper part of the mobile phone against head. Maximum TIS levels are recorded in talk position for mobile phones with external antenna and maximum differences in TIS levels due to the hand-hold alteration are recorded for clamshell-type phones.Keywords: FDTD, mobile phone, phantoms, TIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19703712 Persian Pistachio Nut (Pistacia vera L.) Dehydration in Natural and Industrial Conditions
Authors: Hamid Tavakolipour, Mohsen Mokhtarian, Ahmad Kalbasi Ashtari
Abstract:
In this study, the effect of various drying methods (sun drying, shade drying and industrial drying) on final moisture content, shell splitting degree, shrinkage and color change were studied. Sun drying resulted higher degree of pistachio nuts shell splitting on pistachio nuts relative other drying methods. The ANOVA results showed that the different drying methods did not significantly effects on color change of dried pistachio nut. The results illustrated that pistachio nut dried by industrial drying had the lowest moisture content. After the end of drying process, initially, the experimental drying data were fitted with five famous drying models namely Newton, Page, Silva et al., Peleg and Henderson and Pabis. The results indicated that Peleg and Page models gave better results compared with other models to monitor the moisture ratio’s pistachio nut in industrial drying and open sun (or shade drying) methods, respectively.
Keywords: Industrial drying, Modeling, Pistachio, quality properties, Traditional drying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338