Search results for: Additive fuzzy system
8539 Applying Fuzzy Decision Making Approach to IT Outsourcing Supplier Selection
Authors: Gülcin Büyüközkan, Mehmet Sakir Ersoy
Abstract:
The decision of information technology (IT) outsourcing requires close attention to the evaluation of supplier selection process because the selection decision involves conflicting multiple criteria and is replete with complex decision making problems. Selecting the most appropriate suppliers is considered an important strategic decision that may impact the performance of outsourcing engagements. The objective of this paper is to aid decision makers to evaluate and assess possible IT outsourcing suppliers. An axiomatic design based fuzzy group decision making is adopted to evaluate supplier alternatives. Finally, a case study is given to demonstrate the potential of the methodology. KeywordsIT outsourcing, Supplier selection, Multi-criteria decision making, Axiomatic design, Fuzzy logic.Keywords: IT outsourcing, Supplier selection, Multi-criteria decision making, Axiomatic design, Fuzzy logic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19618538 Solutions of Fuzzy Transportation Problem Using Best Candidates Method and Different Ranking Techniques
Authors: M. S. Annie Christi
Abstract:
Transportation Problem (TP) is based on supply and demand of commodities transported from one source to the different destinations. Usual methods for finding solution of TPs are North-West Corner Rule, Least Cost Method Vogel’s Approximation Method etc. The transportation costs tend to vary at each time. We can use fuzzy numbers which would give solution according to this situation. In this study the Best Candidate Method (BCM) is applied. For ranking Centroid Ranking Technique (CRT) and Robust Ranking Technique have been adopted to transform the fuzzy TP and the above methods are applied to EDWARDS Vacuum Company, Crawley, in West Sussex in the United Kingdom. A Comparative study is also given. We see that the transportation cost can be minimized by the application of CRT under BCM.
Keywords: Best candidates method, centroid ranking technique, robust ranking technique, transportation problem, fuzzy transportation problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15808537 On the Noise Distance in Robust Fuzzy C-Means
Authors: M. G. C. A. Cimino, G. Frosini, B. Lazzerini, F. Marcelloni
Abstract:
In the last decades, a number of robust fuzzy clustering algorithms have been proposed to partition data sets affected by noise and outliers. Robust fuzzy C-means (robust-FCM) is certainly one of the most known among these algorithms. In robust-FCM, noise is modeled as a separate cluster and is characterized by a prototype that has a constant distance δ from all data points. Distance δ determines the boundary of the noise cluster and therefore is a critical parameter of the algorithm. Though some approaches have been proposed to automatically determine the most suitable δ for the specific application, up to today an efficient and fully satisfactory solution does not exist. The aim of this paper is to propose a novel method to compute the optimal δ based on the analysis of the distribution of the percentage of objects assigned to the noise cluster in repeated executions of the robust-FCM with decreasing values of δ . The extremely encouraging results obtained on some data sets found in the literature are shown and discussed.Keywords: noise prototype, robust fuzzy clustering, robustfuzzy C-means
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18298536 An Enhanced Associativity Based Routing with Fuzzy Based Trust to Mitigate Network Attacks
Authors: K. Geetha, P. Thangaraj
Abstract:
Mobile Ad Hoc Networks (MANETs) is a collection of mobile devices forming a communication network without infrastructure. MANET is vulnerable to security threats due to network’s limited security, dynamic topology, scalability and the lack of central management. The Quality of Service (QoS) routing in such networks is limited by network breakage caused by node mobility or nodes energy depletions. The impact of node mobility on trust establishment is considered and its use to propagate trust through a network is investigated in this paper. This work proposes an enhanced Associativity Based Routing (ABR) with Fuzzy based Trust (Fuzzy- ABR) routing protocol for MANET to improve QoS and to mitigate network attacks.Keywords: Mobile Ad hoc Networks (MANET), Associativity Based Routing (ABR), Fuzzy based Computed Trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25668535 Model Predictive Fuzzy Control of Air-ratio for Automotive Engines
Authors: Hang-cheong Wong, Pak-kin Wong, Chi-man Vong, Zhengchao Xie, Shaojia Huang
Abstract:
Automotive engine air-ratio plays an important role of emissions and fuel consumption reduction while maintains satisfactory engine power among all of the engine control variables. In order to effectively control the air-ratio, this paper presents a model predictive fuzzy control algorithm based on online least-squares support vector machines prediction model and fuzzy logic optimizer. The proposed control algorithm was also implemented on a real car for testing and the results are highly satisfactory. Experimental results show that the proposed control algorithm can regulate the engine air-ratio to the stoichiometric value, 1.0, under external disturbance with less than 5% tolerance.Keywords: Air-ratio, Fuzzy logic, online least-squares support vector machine, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18188534 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults
Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed
Abstract:
Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.
Keywords: Fuzzy logic, dissolved gas-in-oil analysis, DGA, prediction, power transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13658533 Glass Bottle Inspector Based on Machine Vision
Authors: Huanjun Liu, Yaonan Wang, Feng Duan
Abstract:
This text studies glass bottle intelligent inspector based machine vision instead of manual inspection. The system structure is illustrated in detail in this paper. The text presents the method based on watershed transform methods to segment the possible defective regions and extract features of bottle wall by rules. Then wavelet transform are used to exact features of bottle finish from images. After extracting features, the fuzzy support vector machine ensemble is putted forward as classifier. For ensuring that the fuzzy support vector machines have good classification ability, the GA based ensemble method is used to combining the several fuzzy support vector machines. The experiments demonstrate that using this inspector to inspect glass bottles, the accuracy rate may reach above 97.5%.Keywords: Intelligent Inspection, Support Vector Machines, Ensemble Methods, watershed transform, Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39088532 Mitigation of Sag in Real Time
Authors: Vijay Gajanan Neve, Pallavi V. Pullawar, G. M. Dhole
Abstract:
Modern industrial processes are based on a large amount of electronic devices such as programmable logic controllers and adjustable speed drives. Unfortunately, electronic devices are sensitive to disturbances, and thus, industrial loads become less tolerant to power quality problems such as sags, swells, and harmonics. Voltage sags are an important power quality problem. In this paper proposed a new configuration of Static Var Compensator (SVC) considering three different conditions named as topologies and Booster transformer with fuzzy logic based controller, capable of compensating for power quality problems associated with voltage sags and maintaining a prescribed level of voltage profile. Fuzzy logic controller is designed to achieve the firing angles for SVC such that it maintains voltage profile. The online monitoring system for voltage sag mitigation in the laboratory using the hardware is used. The results are presented from the performance of each topology and Booster transformer considered in this paper.
Keywords: Booster Transformer, Fuzzy logic, Static Var Compensator, Voltage sag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25918531 A Family of Entropies on Interval-valued Intuitionistic Fuzzy Sets and Their Applications in Multiple Attribute Decision Making
Abstract:
The entropy of intuitionistic fuzzy sets is used to indicate the degree of fuzziness of an interval-valued intuitionistic fuzzy set(IvIFS). In this paper, we deal with the entropies of IvIFS. Firstly, we propose a family of entropies on IvIFS with a parameter λ ∈ [0, 1], which generalize two entropy measures defined independently by Zhang and Wei, for IvIFS, and then we prove that the new entropy is an increasing function with respect to the parameter λ. Furthermore, a new multiple attribute decision making (MADM) method using entropy-based attribute weights is proposed to deal with the decision making situations where the alternatives on attributes are expressed by IvIFS and the attribute weights information is unknown. Finally, a numerical example is given to illustrate the applications of the proposed method.
Keywords: Interval-valued intuitionistic fuzzy sets, intervalvalued intuitionistic fuzzy entropy, multiple attribute decision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16558530 Fuzzy EOQ Models for Deteriorating Items with Stock Dependent Demand and Non-Linear Holding Costs
Authors: G. C. Mahata, A. Goswami
Abstract:
This paper deals with infinite time horizon fuzzy Economic Order Quantity (EOQ) models for deteriorating items with stock dependent demand rate and nonlinear holding costs by taking deterioration rate θ0 as a triangular fuzzy number (θ0 −δ 1, θ0, θ0 +δ 2), where 1 2 0 0 <δ ,δ <θ are fixed real numbers. The traditional parameters such as unit cost and ordering cost have been kept constant but holding cost is considered to vary. Two possibilities of variations in the holding cost function namely, a non-linear function of the length of time for which the item is held in stock and a non-linear function of the amount of on-hand inventory have been used in the models. The approximate optimal solution for the fuzzy cost functions in both these cases have been obtained and the effect of non-linearity in holding costs is studied with the help of a numerical example.
Keywords: Inventory Model, Deterioration, Holding Cost, Fuzzy Total Cost, Extension Principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18188529 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller
Authors: Jia-Shiun Chen, Hsiu-Ying Hwang
Abstract:
Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.
Keywords: Hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26178528 Optimization of Fuzzy Cluster Nodes in Cellular Multimedia Networks
Authors: J. D. Mallapur, Supriya H., Santosh B. K., Tej H.
Abstract:
The cellular network is one of the emerging areas of communication, in which the mobile nodes act as member for one base station. The cluster based communication is now an emerging area of wireless cellular multimedia networks. The cluster renders fast communication and also a convenient way to work with connectivity. In our scheme we have proposed an optimization technique for the fuzzy cluster nodes, by categorizing the group members into three categories like long refreshable member, medium refreshable member and short refreshable member. By considering long refreshable nodes as static nodes, we compute the new membership values for the other nodes in the cluster. We compare their previous and present membership value with the threshold value to categorize them into three different members. By which, we optimize the nodes in the fuzzy clusters. The simulation results show that there is reduction in the cluster computational time and iterational time after optimization.Keywords: Clusters, fuzzy and optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15778527 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing
Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar
Abstract:
The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.Keywords: Cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10728526 The Application of Hybrid Orthonomal Bernstein and Block-Pulse Functions in Finding Numerical Solution of Fredholm Fuzzy Integral Equations
Authors: Mahmoud Zarrini, Sanaz Torkaman
Abstract:
In this paper, we have proposed a numerical method for solving fuzzy Fredholm integral equation of the second kind. In this method a combination of orthonormal Bernstein and Block-Pulse functions are used. In most cases, the proposed method leads to the exact solution. The advantages of this method are shown by an example and calculate the error analysis.
Keywords: Fuzzy Fredholm Integral Equation, Bernstein, Block-Pulse, Orthonormal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20388525 Optimal Performance of Plastic Extrusion Process Using Fuzzy Goal Programming
Authors: Abbas Al-Refaie
Abstract:
This study optimized the performance of plastic extrusion process of drip irrigation pipes using fuzzy goal programming. Two main responses were of main interest; roll thickness and hardness. Four main process factors were studied. The L18 array was then used for experimental design. The individual-moving range control charts were used to assess the stability of the process, while the process capability index was used to assess process performance. Confirmation experiments were conducted at the obtained combination of optimal factor setting by fuzzy goal programming. The results revealed that process capability was improved significantly from -1.129 to 0.8148 for roll thickness and from 0.0965 to 0.714 and hardness. Such improvement results in considerable savings in production and quality costs.
Keywords: Fuzzy goal programming, extrusion process, process capability, irrigation plastic pipes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9118524 Advanced Robust PDC Fuzzy Control of Nonlinear Systems
Authors: M. Polanský
Abstract:
This paper introduces a new method called ARPDC (Advanced Robust Parallel Distributed Compensation) for automatic control of nonlinear systems. This method improves a quality of robust control by interpolating of robust and optimal controller. The weight of each controller is determined by an original criteria function for model validity and disturbance appreciation. ARPDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy systems and Parallel Distributed Compensation (PDC) control scheme. The relaxed stability conditions of ARPDC control of nominal system have been derived. The advantages of presented method are demonstrated on the inverse pendulum benchmark problem. From comparison between three different controllers (robust, optimal and ARPDC) follows, that ARPDC control is almost optimal with the robustness close to the robust controller. The results indicate that ARPDC algorithm can be a good alternative not only for a robust control, but in some cases also to an adaptive control of nonlinear systems.
Keywords: Robust control, optimal control, Takagi–Sugeno (TS) fuzzy models, linear matrix inequality (LMI), observer, Advanced Robust Parallel Distributed Compensation (ARPDC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15818523 Multilevel Fuzzy Decision Support Model for China-s Urban Rail Transit Planning Schemes
Authors: Jin-Bao Zhao, Wei Deng
Abstract:
This paper aims at developing a multilevel fuzzy decision support model for urban rail transit planning schemes in China under the background that China is presently experiencing an unprecedented construction of urban rail transit. In this study, an appropriate model using multilevel fuzzy comprehensive evaluation method is developed. In the decision process, the followings are considered as the influential objectives: traveler attraction, environment protection, project feasibility and operation. In addition, consistent matrix analysis method is used to determine the weights between objectives and the weights between the objectives- sub-indictors, which reduces the work caused by repeated establishment of the decision matrix on the basis of ensuring the consistency of decision matrix. The application results show that multilevel fuzzy decision model can perfectly deal with the multivariable and multilevel decision process, which is particularly useful in the resolution of multilevel decision-making problem of urban rail transit planning schemes.Keywords: Urban rail transit, planning schemes, multilevel fuzzy decision support model, consistent matrix analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13288522 Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection
Authors: Witcha Chimphlee, Abdul Hanan Abdullah, Mohd Noor Md Sap, Siriporn Chimphlee, Surat Srinoy
Abstract:
It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems.Keywords: Network and security, intrusion detection, fuzzy cmeans, rough set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28708521 Automatic Feature Recognition for GPR Image Processing
Authors: Yi-an Cui, Lu Wang, Jian-ping Xiao
Abstract:
This paper presents an automatic feature recognition method based on center-surround difference detecting and fuzzy logic that can be applied in ground-penetrating radar (GPR) image processing. Adopted center-surround difference method, the salient local image regions are extracted from the GPR images as features of detected objects. And fuzzy logic strategy is used to match the detected features and features in template database. This way, the problem of objects detecting, which is the key problem in GPR image processing, can be converted into two steps, feature extracting and matching. The contributions of these skills make the system have the ability to deal with changes in scale, antenna and noises. The results of experiments also prove that the system has higher ratio of features sensing in using GPR to image the subsurface structures.Keywords: feature recognition, GPR image, matching strategy, salient image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22948520 Identification of a PWA Model of a Batch Reactor for Model Predictive Control
Authors: Gorazd Karer, Igor Skrjanc, Borut Zupancic
Abstract:
The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introduce the PWA model. Next, we tackle the identification method. We treat the fuzzy clustering algorithm, deal with the projections of the fuzzy clusters into the input space of the PWA model and explain the estimation of the parameters of the PWA model by means of a modified least-squares method. Furthermore, we verify the usability of the proposed identification approach on a hybrid nonlinear batch reactor example. The result suggest that the batch reactor can be efficiently identified and thus formulated as a PWA model, which can eventually be used for model predictive control purposes.
Keywords: Batch reactor, fuzzy clustering, hybrid systems, identification, nonlinear systems, PWA systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21998519 Optimal Aggregate Production Planning with Fuzzy Data
Authors: Wen-Lung Huang, Shih-Pin Chen
Abstract:
This paper investigates the optimization problem of multi-product aggregate production planning (APP) with fuzzy data. From a comprehensive viewpoint of conserving the fuzziness of input information, this paper proposes a method that can completely describe the membership function of the performance measure. The idea is based on the well-known Zadeh-s extension principle which plays an important role in fuzzy theory. In the proposed solution procedure, a pair of mathematical programs parameterized by possibility level a is formulated to calculate the bounds of the optimal performance measure at a . Then the membership function of the optimal performance measure is constructed by enumerating different values of a . Solutions obtained from the proposed method contain more information, and can offer more chance to achieve the feasible disaggregate plan. This is helpful to the decision-maker in practical applications.Keywords: fuzzy data, aggregate production planning, membership function, parametric programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17498518 Integrated Design in Additive Manufacturing Based on Design for Manufacturing
Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon
Abstract:
Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.
Keywords: Additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22678517 Influence of Surface Area on Dissolution of Additively Manufactured Polyvinyl Alcohol Tablets
Authors: Seyedebrahim Afkhami, Meisam Abdi, Reza Baserinia
Abstract:
Additive manufacturing is revolutionizing production in different industries, including pharmaceuticals. This case study explores the influence of surface area on the dissolution of additively manufactured polyvinyl alcohol parts as a polymer candidate. Specimens of different geometries and constant mass were fabricated using a Fused Deposition Modeling (FDM) 3D printer. The dissolution behavior of these samples was compared with respect to their surface area. Improved and accelerated dissolution was observed for samples with a larger surface area. This study highlights the capabilities of additive manufacturing to produce samples of complex geometries that cannot be manufactured otherwise to control the dissolution behavior for pharmaceutical and biopharmaceutical applications.
Keywords: Additive manufacturing, polymer dissolution, fused deposition modelling, geometry optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208516 Inverse Dynamic Active Ground Motion Acceleration Inputs Estimation of the Retaining Structure
Authors: Ming-Hui Lee, Iau-Teh Wang
Abstract:
The innovative fuzzy estimator is used to estimate the ground motion acceleration of the retaining structure in this study. The Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the fuzzy weighting recursive least square estimator to estimate the acceleration input over time. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function, the distinct levels of the measurement noise covariance and the initial process noise covariance. The availability and the precision of the proposed method proposed in this study can be verified by comparing the actual value and the one obtained by numerical simulation.Keywords: Earthquake, Fuzzy Estimator, Kalman Filter, Recursive Least Square Estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15558515 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment
Authors: Fares Innal, Yves Dutuit, Mourad Chebila
Abstract:
The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.
Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27868514 A Model for Estimation of Efforts in Development of Software Systems
Authors: Parvinder S. Sandhu, Manisha Prashar, Pourush Bassi, Atul Bisht
Abstract:
Software effort estimation is the process of predicting the most realistic use of effort required to develop or maintain software based on incomplete, uncertain and/or noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets. There are various models like Halstead, Walston-Felix, Bailey-Basili, Doty and GA Based models which have already used to estimate the software effort for projects. In this study Statistical Models, Fuzzy-GA and Neuro-Fuzzy (NF) Inference Systems are experimented to estimate the software effort for projects. The performances of the developed models were tested on NASA software project datasets and results are compared with the Halstead, Walston-Felix, Bailey-Basili, Doty and Genetic Algorithm Based models mentioned in the literature. The result shows that the NF Model has the lowest MMRE and RMSE values. The NF Model shows the best results as compared with the Fuzzy-GA based hybrid Inference System and other existing Models that are being used for the Effort Prediction with lowest MMRE and RMSE values.Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model, GA Based Model, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32378513 Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Differential Evolution Technique
Authors: Banaja Mohanty, Prakash Kumar Hota
Abstract:
This paper presents a differential evolution algorithm to design a robust PI and PID controllers for Load Frequency Control (LFC) of nonlinear interconnected power systems considering the boiler dynamics, Governor Dead Band (GDB), Generation Rate Constraint (GRC). Differential evolution algorithm is employed to search for the optimal controller parameters. The proposed method easily copes of with nonlinear constraints. Further the proposed controller is simple, effective and can ensure the desirable overall system performance. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic controller for the same power systems. The comparison is done using various performance measures like overshoot, settling time and standard error criteria of frequency and tie-line power deviation following a 1% step load perturbation in hydro area. It is noticed that, the dynamic performance of proposed controller is better than fuzzy logic controller. Furthermore, it is also seen that the proposed system is robust and is not affected by change in the system parameters.
Keywords: Automatic Generation control (AGC), Generation Rate Constraint (GRC), Governor Dead Band (GDB), Differential Evolution (DE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33768512 Retrieving Similar Segmented Objects Using Motion Descriptors
Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou
Abstract:
The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.
Keywords: Fuzzy Object, Fuzzy Image Segmentation, Motion Descriptors, MRI Imaging, Object-Based Image Retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23098511 Sociological Impact on Education An Analytical Approach Through Artificial Neural network
Authors: P. R. Jayathilaka, K.L. Jayaratne, H.L. Premaratne
Abstract:
This research presented in this paper is an on-going project of an application of neural network and fuzzy models to evaluate the sociological factors which affect the educational performance of the students in Sri Lanka. One of its major goals is to prepare the grounds to device a counseling tool which helps these students for a better performance at their examinations, especially at their G.C.E O/L (General Certificate of Education-Ordinary Level) examination. Closely related sociological factors are collected as raw data and the noise of these data are filtered through the fuzzy interface and the supervised neural network is being utilized to recognize the performance patterns against the chosen social factors.Keywords: Education, Fuzzy, neural network, prediction, Sociology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16488510 Measuring Banks’ Antifragility via Fuzzy Logic
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Analysing the world banking sector, we realize that traditional risk measurement methodologies no longer reflect the actual scenario with uncertainty and leave out events that can change the dynamics of markets. Considering this, regulators and financial institutions began to search more realistic models. The aim is to include external influences and interdependencies between agents, to describe and measure the operationalization of these complex systems and their risks in a more coherent and credible way. Within this context, X-Events are more frequent than assumed and, with uncertainties and constant changes, the concept of antifragility starts to gain great prominence in comparison to others methodologies of risk management. It is very useful to analyse whether a system succumbs (fragile), resists (robust) or gets benefits (antifragile) from disorder and stress. Thus, this work proposes the creation of the Banking Antifragility Index (BAI), which is based on the calculation of a triangular fuzzy number – to "quantify" qualitative criteria linked to antifragility.
Keywords: Complex adaptive systems, X-events, risk management, antifragility, banking antifragility index, triangular fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910