Search results for: wave
512 Effect of Chromatic Dispersion on Optical Generation of Tunable Millimeter-Wave Signals
Authors: M. R. Salehi, S. Khosroabadi
Abstract:
In this paper, the optical generation of three bands of continuously tunable millimeter-wave signals using an optical phase modulator (OPM) and a polarization state rotation filter (PSRF) as an optical notch filter is analyzed. The effect of the chromatic dispersion on millimeter-wave signals is presented.Keywords: Optical generation, millimeter-wave, optical notchfilter , chromatic dispersion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863511 The Direct Ansaz Method for Finding Exact Multi-Wave Solutions to the (2+1)-Dimensional Extension of the Korteweg de-Vries Equation
Authors: Chuanjian Wang, Changfu Liu, Zhengde Dai
Abstract:
In this paper, the direct AnsAz method is used for constructing the multi-wave solutions to the (2+1)-dimensional extension of the Korteweg de-Vries (shortly EKdV) equation. A new breather type of three-wave solutions including periodic breather type soliton solution, breather type of two-solitary solution are obtained. Some cases with specific values of the involved parameters are plotted for each of the three-wave solutions. Mechanical features of resonance interaction among the multi-wave are discussed. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.
Keywords: EKdV equation, Breather, Soliton, Bilinear form, The direct AnsAz method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577510 Estimating the Flow Velocity Using Flow Generated Sound
Authors: Saeed Hosseini, Ali Reza Tahavvor
Abstract:
Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is found. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.Keywords: Flow generated sound, sound processing, speed, wave power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368509 Detailed Microzonation Studies around Denizli, Turkey
Authors: A. Aydin, E. Akyol, N. Soyatik
Abstract:
This study has been presented which is a detailed work of seismic microzonation of the city center. For seismic microzonation area of 225 km2 has been selected as the study area. MASW (Multichannel analysis of surface wave) and seismic refraction methods have been used to generate one-dimensional shear wave velocity profile at 250 locations and two-dimensional profile at 60 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 60 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Denizli and the application and use of these results should be required and enforced by municipal authorities.
Keywords: Seismic microzonation, liquefaction, land use management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755508 Analytical Investigation of the Effects of a Standing Ocean Wave in a Wave-Power Device OWC
Authors: E.G. Bautista, F. Méndez, O. Bautista, J.C. Arcos
Abstract:
In this work we study analytically and numerically the performance of the mean heave motion of an OWC coupled with the governing equation of the spreading ocean waves due to the wide variation in an open parabolic channel with constant depth. This paper considers that the ocean wave propagation is under the assumption of a shallow flow condition. In order to verify the effect of the waves in the OWC firstly we establish the analytical model in a non-dimensional form based on the energy equation. The proposed wave-power system has to aims: one is to perturb the ocean waves as a consequence of the channel shape in order to concentrate the maximum ocean wave amplitude in the neighborhood of the OWC and the second is to determine the pressure and volume oscillation of air inside the compression chamber.Keywords: Oscillating water column, Shallow flow, Waveenergy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467507 Investigation of Dam Safety Making Use of Multichannel Analysis of Surface Wave (MASW) Seismic Method
Authors: Collins C. Chiemeke
Abstract:
Multichannel Analysis of Surface Wave (MASW) seismic method is widely used in geotechnical engineering for the measurement of shear wave velocity and evaluation of material property. This method was recently conducted at a Dam site located in Zaria, within the basement complex of northern Nigeria. The aim of this experiment was to make use of the MASW method in evaluating the strength of material properties of a section of the Dam embankment, which is vital to ascertain the safety of the Dam. The result revealed that, the material embankment showed general increase of shear wave velocity with depth. The range of shear wave velocities and the determined Poisson’s ratio falls within the normal range of consolidated rock material, indicating the Dam embankment is still consolidated. The range of shear modulus determined, also shows that the Dam embankment is rigid enough to withstand the shear stress imposed by the impounded water.
Keywords: Dam, MASW, Multichannel Analysis of Surface Wave, Seismic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345506 Modeling and Visualizing Seismic Wave Propagation in Elastic Medium Using Multi-Dimension Wave Digital Filtering Approach
Authors: Jason Chien-Hsun Tseng, Nguyen Dong-Thai Dao, Chong-Ching Chang
Abstract:
A novel PDE solver using the multidimensional wave digital filtering (MDWDF) technique to achieve the solution of a 2D seismic wave system is presented. In essence, the continuous physical system served by a linear Kirchhoff circuit is transformed to an equivalent discrete dynamic system implemented by a MD wave digital filtering (MDWDF) circuit. This amounts to numerically approximating the differential equations used to describe elements of a MD passive electronic circuit by a grid-based difference equations implemented by the so-called state quantities within the passive MDWDF circuit. So the digital model can track the wave field on a dense 3D grid of points. Details about how to transform the continuous system into a desired discrete passive system are addressed. In addition, initial and boundary conditions are properly embedded into the MDWDF circuit in terms of state quantities. Graphic results have clearly demonstrated some physical effects of seismic wave (P-wave and S–wave) propagation including radiation, reflection, and refraction from and across the hard boundaries. Comparison between the MDWDF technique and the finite difference time domain (FDTD) approach is also made in terms of the computational efficiency.Keywords: Seismic Wave Propagation, Multi-dimension WaveDigital Filters, Partial Differential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435505 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction
Authors: Kyoungjin Kim
Abstract:
Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.
Keywords: Nanoparticles, Thermite reaction, Combustion wave, Numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447504 FZP Design Considering Spherical Wave Incidence
Authors: Sergio Pérez-López, Daniel Tarrazó-Serrano, José M. Fuster, Pilar Candelas, Constanza Rubio
Abstract:
Fresnel Zone Plates (FZPs) are widely used in many areas, such as optics, microwaves or acoustics. On the design of FZPs, plane wave incidence is typically considered, but that is not usually the case in ultrasounds, especially in applications where a piston emitter is placed at a certain distance from the lens. In these cases, having control of the focal distance is very important, and with the usual Fresnel equation a focal displacement from the theoretical distance is observed due to the plane wave supposition. In this work, a comparison between FZP with plane wave incidence design and FZP with point source design in the case of piston emitter is presented. Influence of the main parameters of the piston in the final focalization profile has been studied. Numerical models and experimental results are shown, and they prove that when spherical wave incidence is considered for the piston case, it is possible to have a fine control of the focal distance in comparison with the classical design method.
Keywords: Focusing, Fresnel zone plate, ultrasound, spherical wave incidence, piston emitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757503 The Self-Propelled Model of a Boat, Based on the Wave Thrust
Authors: V. Arabadzhi
Abstract:
We attempted investigate a boat model, based on the conversion of energy of surface wave into a sequence of unidirectional pulses of jet spurts, in other words - model of the boat, which is thrusting by the waves field on water surface. These pulses are forming some average reactive stream from the output nozzle on the stern of boat. The suggested model provides the conversion of its oscillatory motions (both pitching and rolling) into a jet flow. This becomes possible due to special construction of the boat and due to several details, sensitive to the local wave field. The boat model presents the uniflow jet engine without slow conversions of mechanical energy into intermediate forms and without any external sources of energy (besides surface waves). Motion of boat is characterized by fast jerks and average onward velocity, which exceeds the velocities of liquid particles in the wave.Keywords: Flat-bottomed boat, Underwater wing, Input and output nozzles, Wave thrust, Conversion of wave into a jet stream, Oscillatory motion and onward motion, Squid-like pump, Hatch-like pump, The thrust due to lifting float, The thrust due to radiation reaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841502 Analysing of Indoor Radio Wave Propagation on Ad-hoc Network by Using TP-LINK Router
Authors: Khine Phyu, Aung Myint Aye
Abstract:
This paper presents results of measurements campaign carried out at a carrier frequency of 24GHz with the help of TPLINK router in indoor line-of-sight (LOS) scenarios. Firstly, the radio wave propagation strategies are analyzed in some rooms with router of point to point Ad hoc network. Then floor attenuation is defined for 3 floors in experimental region. The free space model and dual slope models are modified by considering the influence of corridor conditions on each floor. Using these models, indoor signal attenuation can be estimated in modeling of indoor radio wave propagation. These results and modified models can also be used in planning the networks of future personal communications services.Keywords: radio wave signal analyzing, LOS radio wavepropagation, indoor radio wave propagation, free space model, tworay model and indoor attenuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017501 Ocean Wave Kinetic Energy Harvesting System for Automated Sub Sea Sensors
Authors: Amir Anvar, Dong Yang Li
Abstract:
This paper presents an overview of the Ocean wave kinetic energy harvesting system. Energy harvesting is a concept by which energy is captured, stored, and utilized using various sources by employing interfaces, storage devices, and other units. Ocean wave energy harvesting in which the kinetic and potential energy contained in the natural oscillations of Ocean waves are converted into electric power. The kinetic energy harvesting system could be used for a number of areas. The main applications that we have discussed in this paper are to how generate the energy from Ocean wave energy (kinetic energy) to electric energy that is to eliminate the requirement for continual battery replacement.
Keywords: Energy harvesting, power system, oceanic, sensors, autonomous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4357500 Dynamic Behaviors of a Floating Bridge with Mooring Lines under Wind and Wave Excitations
Authors: Chungkuk Jin, Moohyun Kim, Woo Chul Chung
Abstract:
This paper presents global performance and dynamic behaviors of a discrete-pontoon-type floating bridge with mooring lines in time domain under wind and wave excitations. The structure is designed for long-distance and deep-water crossing and consists of the girder, columns, pontoons, and mooring lines. Their functionality and behaviors are investigated by using elastic-floater/mooring fully-coupled dynamic simulation computer program. Dynamic wind, first- and second-order wave forces, and current loads are considered as environmental loads. Girder’s dynamic responses and mooring tensions are analyzed under different analysis methods and environmental conditions. Girder’s lateral responses are highly influenced by the second-order wave and wind loads while the first-order wave load mainly influences its vertical responses.Keywords: Floating bridge, elastic dynamic response, coupled dynamics, mooring line, pontoon, wave/wind excitation, resonance, second-order effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544499 New Exact Three-Wave Solutions for the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System
Authors: Fadi Awawdeh, O. Alsayyed
Abstract:
New exact three-wave solutions including periodic two-solitary solutions and doubly periodic solitary solutions for the (2+1)-dimensional asymmetric Nizhnik-Novikov- Veselov (ANNV) system are obtained using Hirota's bilinear form and generalized three-wave type of ansatz approach. It is shown that the generalized three-wave method, with the help of symbolic computation, provides an e¤ective and powerful mathematical tool for solving high dimensional nonlinear evolution equations in mathematical physics.
Keywords: Soliton Solution, Hirota Bilinear Method, ANNV System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511498 Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves
Authors: Amr R. El-Gamal, Ashraf Essa, Ayman Ismail
Abstract:
The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark’s beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated.
Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.
Keywords: Hydrodynamic wave forces, tension leg platforms, tethers length, wave characteristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141497 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.
Keywords: Finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713496 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation
Authors: Anupma Bansal, R. K. Gupta
Abstract:
In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.
Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625495 Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor
Authors: Chao Wang, Zuxue Xia, Wenhai Xia, Rui Wang, Jiayuan Hu, Rui Cheng
Abstract:
Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130 m.
Keywords: indoor positioning, millimeter wave radar, IWR1443 sensor, point cloud imaging
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 488494 A 4-Element Corporate Series Feed Millimeter-Wave Microstrip Antenna Array for 5G Applications
Authors: G. Viswanadh Raviteja
Abstract:
In this paper, a microstrip antenna array is designed for 5G applications. A corporate series feed is considered to operate with a center frequency between 27 to 28 GHz to be able to cover the 5G frequency bands 24.25-27.5 GHz, 26.5-29.5 GHz and 27.5-28.35 GHz. The substrate is taken to be Rogers RT/Duroid 6002. The corporate series 5G antenna array is designed stage by stage by taking into consideration a conventional antenna designed at 28 GHz, thereby constructing the 2X1 antenna array before arriving at the final design structure of 4-element corporate series feed antenna array. The discussions concerning S11 parameter, gain and voltage standing wave ratio (VSWR) for the design structures are considered and all the important findings are tabulated. The proposed antenna array’s S11 parameter was found to be -29.00 dB at a frequency of 27.39 GHz with a good directional gain of 12.12 dB.
Keywords: Corporate series feed, millimeter wave antenna array, 5G applications, millimeter-wave (mm-wave) applications
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 633493 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions
Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic
Abstract:
Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.Keywords: Absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888492 Evaluation Using a Bidirectional Microphone as a Pressure Pulse Wave Meter
Authors: S. Fujiwara, T. Kaburagi, K. Kobayashi, K. Watanabe, Y. Kurihara
Abstract:
This paper describes a novel sensor device, a pressure pulse wave meter, which uses a bidirectional condenser microphone. The microphone work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economic. Currently aging is becoming a serious social issue in Japan causing increased medical expenses in the country. Hence, it is important for elderly citizens to check health condition at home, and to care the health conditions through daily monitoring. Given this circumstances, we developed a novel pressure pulse wave meter based on a bidirectional condenser microphone: this device is used as a measuring instrument of health conditions.Keywords: Bidirectional microphone, pressure pulse wave meter, health condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582491 Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients
Authors: Amit Goyal, Alka, Rama Gupta, C. Nagaraja Kumar
Abstract:
We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.Keywords: Solitary wave solution, Variable coefficient Burgers- Fisher equation, Auxiliary equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627490 Transmission Performance of Millimeter Wave Multiband OFDM UWB Wireless Signal over Fiber System
Authors: M. Mohamed, X. Zhang, K. Wu, M. Elfituri, A. Legnain
Abstract:
Performance of millimeter-wave (mm-wave) multiband orthogonal frequency division multiplexing (MB-OFDM) ultrawideband (UWB) signal generation using frequency quadrupling technique and transmission over fiber is experimentally investigated. The frequency quadrupling is achived by using only one Mach- Zehnder modulator (MZM) that is biased at maximum transmission (MATB) point. At the output, a frequency quadrupling signal is obtained then sent to a second MZM. This MZM is used for MBOFDM UWB signal modulation. In this work, we demonstrate 30- GHz mm-wave wireless that carries three-bands OFDM UWB signals, and error vector magnitude (EVM) is used to analyze the transmission quality. It is found that our proposed technique leads to an improvement of 3.5 dB in EVM at 40% of local oscillator (LO) modulation with comparison to the technique using two cascaded MZMs biased at minimum transmission (MITB) point.Keywords: Optical communication, Frequency up-conversion, Mach-Zehnder modulator, millimeter wave generation, radio over fiber
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576489 Extend Three-wave Method for the (3+1)-Dimensional Soliton Equation
Authors: Somayeh Arbabi Mohammad-Abadi, Maliheh Najafi
Abstract:
In this paper, we study (3+1)-dimensional Soliton equation. We employ the Hirota-s bilinear method to obtain the bilinear form of (3+1)-dimensional Soliton equation. Then by the idea of extended three-wave method, some exact soliton solutions including breather type solutions are presented.
Keywords: Three-wave method, (3+1)-dimensional Soliton equation, Hirota's bilinear form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559488 Influence Analysis of Pelamis Wave Energy Converter Structure Parameters
Authors: Liu Shengnan, Sun Liping, Zhu Jianxun
Abstract:
Based on three dimensional potential flow theory and hinged rigid body motion equations, structure RAOs of Pelamis wave energy converter is analyzed. Analysis of numerical simulation is carried out on Pelamis in the irregular wave conditions, and the motion response of structures and total generated power is obtained. The paper analyzes influencing factors on the average power including diameter of floating body, section form of floating body, draft, hinged stiffness and damping. The optimum parameters are achieved in Zhejiang Province. Compared with the results of the pelamis experiment made by Glasgow University, the method applied in this paper is feasible.
Keywords: Pelamis, Hinge, Floating multibody, Wave energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262487 Optical Heterodyning of Injection-Locked Laser Sources — A Novel Technique for Millimeter-Wave Signal Generation
Authors: Subal Kar, Madhuja Ghosh, Soumik Das, Antara Saha
Abstract:
A novel technique has been developed to generate ultra-stable millimeter-wave signal by optical heterodyning of the output from two slave laser (SL) sources injection-locked to the sidebands of a frequency modulated (FM) master laser (ML). Precise thermal tuning of the SL sources is required to lock the particular slave laser frequency to the desired FM sidebands of the ML. The output signals from the injection-locked SL when coherently heterodyned in a fast response photo detector like high electron mobility transistor (HEMT), extremely stable millimeter-wave signal having very narrow line width can be generated. The scheme may also be used to generate ultra-stable sub-millimeter-wave/terahertz signal.
Keywords: FM sideband injection locking, Master-Slave injection locking, Millimetre-wave signal generation and Optical heterodyning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980486 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring
Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus
Abstract:
A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.Keywords: Cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567485 Solving Inhomogeneous Wave Equation Cauchy Problems using Homotopy Perturbation Method
Authors: Mohamed M. Mousa, Aidarkhan Kaltayev
Abstract:
In this paper, He-s homotopy perturbation method (HPM) is applied to spatial one and three spatial dimensional inhomogeneous wave equation Cauchy problems for obtaining exact solutions. HPM is used for analytic handling of these equations. The results reveal that the HPM is a very effective, convenient and quite accurate to such types of partial differential equations (PDEs).
Keywords: Homotopy perturbation method, Exact solution, Cauchy problem, inhomogeneous wave equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807484 Impairments Correction of Six-Port Based Millimeter-Wave Radar
Authors: Dan Ohev Zion, Alon Cohen
Abstract:
In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.Keywords: Radar, millimeter-wave, six-port, FMCW Radar, IQ mismatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486483 Determination of Non Uniform Sinusoidal Microstrip Leaky-Wave Antenna Radiating Performances in Millimeter Band
Authors: Zahéra Mekkioui
Abstract:
Here we have considered non uniform microstrip leaky-wave antenna implemented on a dielectric waveguide by a sinusoidal profile of periodic metallic grating. The non distribution of the attenuation constant α along propagation axis, optimize the radiating characteristics and performances of such antennas. The method developped here is based on an integral method where the formalism of the admittance operator is combined to a BKW approximation. First, the effect of the modeling in the modal analysis of complex waves is studied in detail. Then, the BKW model is used for the dispersion analysis of the antenna of interest. According to antenna theory, a forced continuity of the leaky-wave magnitude at discontinuities of the non uniform structure is established. To test the validity of our dispersion analysis, computed radiation patterns are presented and compared in the millimeter band.Keywords: antenna, leaky-wave, performances, sinusoidal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772