Search results for: time – varying feed back
7627 To Study the Parametric Effects on Optimality of Various Feeding Sequences of a Multieffect Evaporators in Paper Industry using Mathematical Modeling and Simulation with MATLAB
Authors: Deepak Kumar, Vivek Kumar, V. P. Singh
Abstract:
This paper describes a steady state model of a multiple effect evaporator system for simulation and control purposes. The model includes overall as well as component mass balance equations, energy balance equations and heat transfer rate equations for area calculations for all the effects. Each effect in the process is represented by a number of variables which are related by the energy and material balance equations for the feed, product and vapor flow for backward, mixed and split feed. For simulation 'fsolve' solver in MATLAB source code is used. The optimality of three sequences i.e. backward, mixed and splitting feed is studied by varying the various input parameters.Keywords: MATLAB "fsolve" solver, multiple effectevaporators, black liquor, feeding sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32597626 Exponential Stability Analysis for Uncertain Neural Networks with Discrete and Distributed Time-Varying Delays
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of exponential stability analysis for uncertain neural networks with discrete and distributed time-varying delays. Together with a suitable augmented Lyapunov Krasovskii function, zero equalities, reciprocally convex approach and a novel sufficient condition to guarantee the exponential stability of the considered system. The several exponential stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Exponential stability, Uncertain Neural networks, LMI approach, Lyapunov-Krasovskii function, Time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14447625 Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay
Authors: Ju H. Park, S.M. Lee
Abstract:
In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.
Keywords: Lur'e systems, Time-delay, Stabilization, LMIs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16867624 New Approaches on Exponential Stability Analysis for Neural Networks with Time-Varying Delays
Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong
Abstract:
In this paper, utilizing the Lyapunov functional method and combining linear matrix inequality (LMI) techniques and integral inequality approach (IIA) to study the exponential stability problem for neural networks with discrete and distributed time-varying delays.By constructing new Lyapunov-Krasovskii functional and dividing the discrete delay interval into multiple segments,some new delay-dependent exponential stability criteria are established in terms of LMIs and can be easily checked.In order to show the stability condition in this paper gives much less conservative results than those in the literature,numerical examples are considered.
Keywords: Neural networks, Exponential stability, LMI approach, Time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20647623 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction
Authors: E. Giovanis
Abstract:
In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16727622 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion
Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina
Abstract:
The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15347621 Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.
Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-Doppler features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5217620 Margin-Based Feed-Forward Neural Network Classifiers
Authors: Han Xiao, Xiaoyan Zhu
Abstract:
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17257619 Three-Level Converters Back-to-Back DC Bus Control for Torque Ripple Reduction of Induction Motor
Authors: T. Abdelkrim, K. Benamrane, B. Bezza, Aeh Benkhelifa, A. Borni
Abstract:
This paper proposes a regulation method of back-to-back connected three-level converters in order to reduce the torque ripple in induction motor. First part is dedicated to the presentation of the feedback control of three-level PWM rectifier. In the second part, three-level NPC voltage source inverter balancing DC bus algorithm is presented. A theoretical analysis with a complete simulation of the system is presented to prove the excellent performance of the proposed technique.
Keywords: Back-to-back connection, Feedback control, Neutral-point balance, Three-level converter, Torque ripple.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25047618 Minimizing the Drilling-Induced Damage in Fiber Reinforced Polymeric Composites
Authors: S. D. El Wakil, M. Pladsen
Abstract:
Fiber reinforced polymeric (FRP) composites are finding wide-spread industrial applications because of their exceptionally high specific strength and specific modulus of elasticity. Nevertheless, it is very seldom to get ready-for-use components or products made of FRP composites. Secondary processing by machining, particularly drilling, is almost always required to make holes for fastening components together to produce assemblies. That creates problems since the FRP composites are neither homogeneous nor isotropic. Some of the problems that are encountered include the subsequent damage in the region around the drilled hole and the drilling – induced delamination of the layer of ply, that occurs both at the entrance and the exit planes of the work piece. Evidently, the functionality of the work piece would be detrimentally affected. The current work was carried out with the aim of eliminating or at least minimizing the work piece damage associated with drilling of FPR composites. Each test specimen involves a woven reinforced graphite fiber/epoxy composite having a thickness of 12.5 mm (0.5 inch). A large number of test specimens were subjected to drilling operations with different combinations of feed rates and cutting speeds. The drilling induced damage was taken as the absolute value of the difference between the drilled hole diameter and the nominal one taken as a percentage of the nominal diameter. The later was determined for each combination of feed rate and cutting speed, and a matrix comprising those values was established, where the columns indicate varying feed rate while and rows indicate varying cutting speeds. Next, the analysis of variance (ANOVA) approach was employed using Minitab software, in order to obtain the combination that would improve the drilling induced damage. Experimental results show that low feed rates coupled with low cutting speeds yielded the best results.
Keywords: Drilling of Composites, dimensional accuracy of holes drilled in composites, delamination and charring, graphite-epoxy composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8067617 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay
Authors: Caigen Zhou, Haibo Jiang
Abstract:
The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16967616 Short Time Identification of Feed Drive Systems using Nonlinear Least Squares Method
Authors: M.G.A. Nassef, Linghan Li, C. Schenck, B. Kuhfuss
Abstract:
Design and modeling of nonlinear systems require the knowledge of all inside acting parameters and effects. An empirical alternative is to identify the system-s transfer function from input and output data as a black box model. This paper presents a procedure using least squares algorithm for the identification of a feed drive system coefficients in time domain using a reduced model based on windowed input and output data. The command and response of the axis are first measured in the first 4 ms, and then least squares are applied to predict the transfer function coefficients for this displacement segment. From the identified coefficients, the next command response segments are estimated. The obtained results reveal a considerable potential of least squares method to identify the system-s time-based coefficients and predict accurately the command response as compared to measurements.Keywords: feed drive systems, least squares algorithm, onlineparameter identification, short time window
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20967615 Quasi Multi-Pulse Back-to-Back Static Synchronous Compensator Employing Line Frequency Switching 2-Level GTO Inverters
Authors: A.M. Vural, K.C. Bayindir
Abstract:
Back-to-back static synchronous compensator (BtBSTATCOM) consists of two back-to-back voltage-source converters (VSC) with a common DC link in a substation. This configuration extends the capabilities of conventional STATCOM that bidirectional active power transfer from one bus to another is possible. In this paper, VSCs are designed in quasi multi-pulse form in which GTOs are triggered only once per cycle in PSCAD/EMTDC. The design details of VSCs as well as gate switching circuits and controllers are fully represented. Regulation modes of BtBSTATCOM are verified and tested on a multi-machine power system through different simulation cases. The results presented in the form of typical time responses show that practical PI controllers are almost robust and stable in case of start-up, set-point change, and line faults.
Keywords: Flexible AC Transmission Systems (FACTS), Backto-Back Static Synchronous Compensator (BtB-STATCOM), quasi multi-pulse voltage source converter, active power transfer; voltage control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21477614 A Comparative Study of the Effectiveness of Trained Inspectors in Different Workloads between Feed Forward and Feedback Training
Authors: Sittichai K., Anucha W., Phonsak L.
Abstract:
Objective of this study was to study and compare the effectiveness of inspectors who had different workloads for feed forward and feedback training. The visual search task was simulated to search for specified alphabets called defects. These defects were included of four alphabets in Thai and English such as s ภ, ถ, X, and V with different background. These defects were combined in the specified alphabets and were given the different three backgrounds i.e., Thai, English, and mixed English and Thai alphabets. Sixty students were chosen as a sample in this study and test for final selection subject. Finally, five subjects were taken into testing process. They were asked to search for defects after they were provided basic information. Experiment design was used factorial design and subjects were trained for feed forward and the feedback training. The results show that both trainings were affected on mean search time. It was also found that the feedback training can increase the effectiveness of visual inspectors rather than the feed forward training significantly different at the level of .05
Keywords: visual search, feed forward, feedback training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11567613 Opportunities for Precision Feed in Apiculture for Managing the Efficacy of Feed and Medicine
Authors: John Michael Russo
Abstract:
Honeybees are important to our food system and continue to suffer from high rates of colony loss. Precision feed has brought many benefits to livestock cultivation and these should transfer to apiculture. However, apiculture has unique challenges. The objective of this research is to understand how principles of precision agriculture, applied to apiculture and feed specifically, might effectively improve state-of-the-art cultivation. The methodology surveys apicultural practice to build a model for assessment. First, a review of apicultural motivators is made. Feed method is then evaluated. Finally, precision feed methods are examined as accelerants with potential to advance the effectiveness of feed practice. Six important motivators emerge: colony loss, disease, climate change, site variance, operational costs, and competition. Feed practice itself is used to compensate for environmental variables. The research finds that the current state-of-the-art in apiculture feed focuses on critical challenges in the management of feed schedules which satisfy requirements of the bees, preserve potency, optimize environmental variables, and manage costs. Many of the challenges are most acute when feed is used to dispense medication. Technology such as RNA treatments have even more rigorous demands. Precision feed solutions focus on strategies which accommodate specific needs of individual livestock. A major component is data; they integrate precise data with methods that respond to individual needs. There is enormous opportunity for precision feed to improve apiculture through the integration of precision data with policies to translate data into optimized action in the apiary, particularly through automation.
Keywords: Apiculture, precision apiculture, RNA varroa treatment, honeybee feed applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347612 A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies
Authors: X. Z. Gao, S. J. Ovaska, X. Wang
Abstract:
Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.Keywords: Predictive filtering, fuzzy logic, sinusoidal signals, time-varying frequencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14947611 Switching Rule for the Exponential Stability and Stabilization of Switched Linear Systems with Interval Time-varying Delays
Authors: Kreangkri Ratchagit
Abstract:
This paper is concerned with exponential stability and stabilization of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton-s formula, a switching rule for the exponential stability and stabilization of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability and stabilization of the systems are first established in terms of LMIs. Numerical examples are included to illustrate the effectiveness of the results.
Keywords: Switching design, exponential stability and stabilization, switched linear systems, interval delay, Lyapunov function, linear matrix inequalities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15257610 Feed-Forward Control in Resonant DC Link Inverter
Authors: Apinan Aurasopon, Worawat Sa-ngiavibool
Abstract:
This paper proposes a feed-forward control in resonant dc link inverter. The feed-forward control configuration is based on synchronous sigma-delta modulation. The simulation results showing the proposed technique can reject non-ideal dc bus improving the total harmonic distortion.Keywords: Feed-forward control, Resonant dc link inverter, Synchronous sigma-delta modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18237609 Improving the Performance of Back-Propagation Training Algorithm by Using ANN
Authors: Vishnu Pratap Singh Kirar
Abstract:
Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.
Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35597608 Study of the Appropriate Factors for Laminated Bamboo Bending by Design of Experiments
Authors: Vanchai Laemlaksakul, Sompoap Talabgaew
Abstract:
This research studied the appropriate factors and conditions for laminated bamboo bending by Design of Experiments (DOE). The interested factors affecting the spring back in laminates bamboo were (1) time, (2) thickness, and (3) frequency. This experiment tested the specimen by using high frequency machine and measured its spring back immediately and next 24 hours for comparing the spring back ratio. Results from the experiments showed that significant factors having major influence to bending of laminates bamboo were thickness and frequency. The appropriate conditions of thickness and frequency were 4 mm. and 1.5 respectively.
Keywords: Bamboo, bending, spring back, design of experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17887607 Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays
Authors: Yucai Ding, Hong Zhu, Shouming Zhong, Yuping Zhang
Abstract:
This paper considers H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.
Keywords: H∞ performance, Markovian switching, Delaydependent stability, Linear matrix inequality (LMI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16167606 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14987605 Exponential Stability and Periodicity of a Class of Cellular Neural Networks with Time-Varying Delays
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
The problem of exponential stability and periodicity for a class of cellular neural networks (DCNNs) with time-varying delays is investigated. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions for exponential stability and periodicity are derived via the methods of variation parameters and inequality techniques. These conditions are represented by some blocks of the interconnection matrices. Compared with some previous methods, the method used in this paper does not resort to any Lyapunov function, and the results derived in this paper improve and generalize some earlier criteria established in the literature cited therein. Two examples are discussed to illustrate the main results.
Keywords: Cellular neural networks, exponential stability, time varying delays, partitioned matrices, periodic solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15267604 Assessment of the Effect of Feed Plate Location on Interactions for a Binary Distillation Column
Authors: A. Khelassi, R. Bendib
Abstract:
The paper considers the effect of feed plate location on the interactions in a seven plate binary distillation column. The mathematical model of the distillation column is deduced based on the equations of mass and energy balances for each stage, detailed model for both reboiler and condenser, and heat transfer equations. The Dynamic Relative Magnitude Criterion, DRMC is used to assess the interactions in different feed plate locations for a seven plate (Benzene-Toluene) binary distillation column ( the feed plate is originally at stage 4). The results show that whenever we go far from the optimum feed plate position, the level of interaction augments.Keywords: Distillation column, assessment of interactions, feedplate location, DRMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23977603 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8597602 Analytical Crack Propagation Scenario for Gear Teeth and Time-Varying Gear Mesh Stiffness
Authors: Omar D. Mohammed, Matti Rantatalo, Uday Kumar
Abstract:
In this paper an analytical crack propagation scenario is proposed which assumes that a crack propagates in the tooth root in both the crack depth direction and the tooth width direction, and which is more reasonable and realistic for non-uniform load distribution cases than the other presented scenarios. An analytical approach is used for quantifying the loss of time-varying gear mesh stiffness with the presence of crack propagation in the gear tooth root. The proposed crack propagation scenario can be applied for crack propagation modelling and monitoring simulation, but further research is required for comparison and evaluation of all the presented crack propagation scenarios from the condition monitoring point of view.Keywords: Crack propagation, Gear tooth crack, Time varying gear mesh stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28147601 Robust Stability Criteria for Uncertain Genetic Regulatory Networks with Time-Varying Delays
Authors: Wenqin Wang, Shouming Zhong
Abstract:
This paper presents the robust stability criteria for uncertain genetic regulatory networks with time-varying delays. One key point of the criterion is that the decomposition of the matrix ˜D into ˜D = ˜D1 + ˜D2. This decomposition corresponds to a decomposition of the delayed terms into two groups: the stabilizing ones and the destabilizing ones. This technique enables one to take the stabilizing effect of part of the delayed terms into account. Meanwhile, by choosing an appropriate new Lyapunov functional, a new delay-dependent stability criteria is obtained and formulated in terms of linear matrix inequalities (LMIs). Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results.
Keywords: Genetic regulatory network, Time-varying delay, Uncertain system, Lyapunov-Krasovskii functional
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15237600 Waste Oils pre-Esterification for Biodiesel Synthesis: Effect of Feed Moisture Contents
Authors: Kalala Jalama
Abstract:
A process flowsheet was developed in ChemCad 6.4 to study the effect of feed moisture contents on the pre-esterification of waste oils. Waste oils were modelled as a mixture of triolein (90%), oleic acid (5%) and water (5%). The process mainly consisted of feed drying, pre-esterification reaction and methanol recovery. The results showed that the process energy requirements would be minimized when higher degrees of feed drying and higher preesterification reaction temperatures are used.Keywords: Waste oils, moisture content, pre-esterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17557599 Augmented Lyapunov Approach to Robust Stability of Discrete-time Stochastic Neural Networks with Time-varying Delays
Authors: Shu Lü, Shouming Zhong, Zixin Liu
Abstract:
In this paper, the robust exponential stability problem of discrete-time uncertain stochastic neural networks with timevarying delays is investigated. By introducing a new augmented Lyapunov function, some delay-dependent stable results are obtained in terms of linear matrix inequality (LMI) technique. Compared with some existing results in the literature, the conservatism of the new criteria is reduced notably. Three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed method.
Keywords: Robust exponential stability, delay-dependent stability, discrete-time neural networks, stochastic, time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14367598 A Novel Approach to Positive Almost Periodic Solution of BAM Neural Networks with Time-Varying Delays
Abstract:
In this paper, based on almost periodic functional hull theory and M-matrix theory, some sufficient conditions are established for the existence and uniqueness of positive almost periodic solution for a class of BAM neural networks with time-varying delays. An example is given to illustrate the main results.
Keywords: Delayed BAM neural networks, Hull theorem, Mmatrix, Almost periodic solution, Global exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415