Search results for: teaching-learning based optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12325

Search results for: teaching-learning based optimization

12295 Periodic Topology and Size Optimization Design of Tower Crane Boom

Authors: Wu Qinglong, Zhou Qicai, Xiong Xiaolei, Zhang Richeng

Abstract:

In order to achieve the layout and size optimization of the web members of tower crane boom, a truss topology and cross section size optimization method based on continuum is proposed considering three typical working conditions. Firstly, the optimization model is established by replacing web members with web plates. And the web plates are divided into several sub-domains so that periodic soft kill option (SKO) method can be carried out for topology optimization of the slender boom. After getting the optimized topology of web plates, the optimized layout of web members is formed through extracting the principal stress distribution. Finally, using the web member radius as design variable, the boom compliance as objective and the material volume of the boom as constraint, the cross section size optimization mathematical model is established. The size optimization criterion is deduced from the mathematical model by Lagrange multiplier method and Kuhn-Tucker condition. By comparing the original boom with the optimal boom, it is identified that this optimization method can effectively lighten the boom and improve its performance.

Keywords: Tower crane boom, topology optimization, size optimization, periodic, soft kill option, optimization criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
12294 Simulated Annealing Application for Structural Optimization

Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh

Abstract:

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
12293 A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization

Authors: Sasadhar Bera, Indrajit Mukherjee

Abstract:

Ant colony optimization (ACO) and its variants are applied extensively to resolve various continuous optimization problems. As per the various diversification and intensification schemes of ACO for continuous function optimization, researchers generally consider components of multidimensional state space to generate the new search point(s). However, diversifying to a new search space by updating only components of the multidimensional vector may not ensure that the new point is at a significant distance from the current solution. If a minimum distance is not ensured during diversification, then there is always a possibility that the search will end up with reaching only local optimum. Therefore, to overcome such situations, a Mahalanobis distance-based diversification with Nelder-Mead simplex-based search scheme for each ant is proposed for the ACO strategy. A comparative computational run results, based on nine nonlinear standard test problems, confirms that the performance of ACO is improved significantly with the integration of the proposed schemes in the ACO.

Keywords: Ant Colony Optimization, Diversification Scheme, Intensification, Mahalanobis Distance, Nelder-Mead Simplex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
12292 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: Evolutionary algorithms, portfolio optimization, skewness, stock selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
12291 An Intelligent Optimization Model for Multi-objective Order Allocation Planning

Authors: W. K. Wong, Z. X. Guo, P.Y. Mok

Abstract:

This paper presents a multi-objective order allocation planning problem with the consideration of various real-world production features. A novel hybrid intelligent optimization model, integrating a multi-objective memetic optimization process, a Monte Carlo simulation technique and a heuristic pruning technique, is proposed to handle this problem. Experiments based on industrial data are conducted to validate the proposed model. Results show that (1) the proposed model can effectively solve the investigated problem by providing effective production decision-making solutions, which outperformsan NSGA-II-based optimization process and an industrial method.

Keywords: Multi-objective order allocation planning, Pareto optimization, Memetic algorithm, Mento Carlo simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
12290 Stock Portfolio Selection Using Chemical Reaction Optimization

Authors: Jin Xu, Albert Y.S. Lam, Victor O.K. Li

Abstract:

Stock portfolio selection is a classic problem in finance, and it involves deciding how to allocate an institution-s or an individual-s wealth to a number of stocks, with certain investment objectives (return and risk). In this paper, we adopt the classical Markowitz mean-variance model and consider an additional common realistic constraint, namely, the cardinality constraint. Thus, stock portfolio optimization becomes a mixed-integer quadratic programming problem and it is difficult to be solved by exact optimization algorithms. Chemical Reaction Optimization (CRO), which mimics the molecular interactions in a chemical reaction process, is a population-based metaheuristic method. Two different types of CRO, named canonical CRO and Super Molecule-based CRO (S-CRO), are proposed to solve the stock portfolio selection problem. We test both canonical CRO and S-CRO on a benchmark and compare their performance under two criteria: Markowitz efficient frontier (Pareto frontier) and Sharpe ratio. Computational experiments suggest that S-CRO is promising in handling the stock portfolio optimization problem.

Keywords: Stock portfolio selection, Markowitz model, Chemical Reaction Optimization, Sharpe ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
12289 Multi-Criteria Based Robust Markowitz Model under Box Uncertainty

Authors: Pulak Swain, A. K. Ojha

Abstract:

Portfolio optimization is based on dealing with the problems of efficient asset allocation. Risk and Expected return are two conflicting criteria in such problems, where the investor prefers the return to be high and the risk to be low. Using multi-objective approach we can solve those type of problems. However the information which we have for the input parameters are generally ambiguous and the input values can fluctuate around some nominal values. We can not ignore the uncertainty in input values, as they can affect the asset allocation drastically. So we use Robust Optimization approach to the problems where the input parameters comes under box uncertainty. In this paper, we solve the multi criteria robust problem with the help of  E- constraint method.

Keywords: Portfolio optimization, multi-objective optimization, E-constraint method, box uncertainty, robust optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
12288 A Ground Structure Method to Minimize the Total Installed Cost of Steel Frame Structures

Authors: Filippo Ranalli, Forest Flager, Martin Fischer

Abstract:

This paper presents a ground structure method to optimize the topology and discrete member sizing of steel frame structures in order to minimize total installed cost, including material, fabrication and erection components. The proposed method improves upon existing cost-based ground structure methods by incorporating constructability considerations well as satisfying both strength and serviceability constraints. The architecture for the method is a bi-level Multidisciplinary Feasible (MDF) architecture in which the discrete member sizing optimization is nested within the topology optimization process. For each structural topology generated, the sizing optimization process seek to find a set of discrete member sizes that result in the lowest total installed cost while satisfying strength (member utilization) and serviceability (node deflection and story drift) criteria. To accurately assess cost, the connection details for the structure are generated automatically using accurate site-specific cost information obtained directly from fabricators and erectors. Member continuity rules are also applied to each node in the structure to improve constructability. The proposed optimization method is benchmarked against conventional weight-based ground structure optimization methods resulting in an average cost savings of up to 30% with comparable computational efficiency.

Keywords: Cost-based structural optimization, cost-based topology and sizing optimization, steel frame ground structure optimization, multidisciplinary optimization of steel structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
12287 Dynamic Construction Site Layout Using Ant Colony Optimization

Authors: Y. Abdelrazig

Abstract:

Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.

Keywords: Construction site layout, optimization, ant colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3125
12286 Multidisciplinary and Multilevel Design Methodology of Unmanned Aerial Vehicles Using Enhanced Collaborative Optimization

Authors: Pedro F. Albuquerque, Pedro V. Gamboa, Miguel A. Silvestre

Abstract:

The present work describes the implementation of the Enhanced Collaborative Optimization (ECO) multilevel architecture with a gradient-based optimization algorithm with the aim of performing a multidisciplinary design optimization of a generic unmanned aerial vehicle with morphing technologies. The concepts of weighting coefficient and dynamic compatibility parameter are presented for the ECO architecture. A routine that calculates the aircraft performance for the user defined mission profile and vehicle’s performance requirements has been implemented using low fidelity models for the aerodynamics, stability, propulsion, weight, balance and flight performance. A benchmarking case study for evaluating the advantage of using a variable span wing within the optimization methodology developed is presented.

Keywords: Multidisciplinary, Multilevel, Morphing, Enhanced Collaborative Optimization (ECO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
12285 An Integrated Framework for the Realtime Investigation of State Space Exploration

Authors: Jörg Lassig, Stefanie Thiem

Abstract:

The objective of this paper is the introduction to a unified optimization framework for research and education. The OPTILIB framework implements different general purpose algorithms for combinatorial optimization and minimum search on standard continuous test functions. The preferences of this library are the straightforward integration of new optimization algorithms and problems as well as the visualization of the optimization process of different methods exploring the search space exclusively or for the real time visualization of different methods in parallel. Further the usage of several implemented methods is presented on the basis of two use cases, where the focus is especially on the algorithm visualization. First it is demonstrated how different methods can be compared conveniently using OPTILIB on the example of different iterative improvement schemes for the TRAVELING SALESMAN PROBLEM. A second study emphasizes how the framework can be used to find global minima in the continuous domain.

Keywords: Global Optimization Heuristics, Particle Swarm Optimization, Ensemble Based Threshold Accepting, Ruin and Recreate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
12284 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: Non-stationary stochastic optimization, oscillating water column, temporal variability, wave energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
12283 Multi-Objective Optimization of a Steam Turbine Stage

Authors: Alvise Pellegrini, Ernesto Benini

Abstract:

The design of a steam turbine is a very complex engineering operation that can be simplified and improved thanks to computer-aided multi-objective optimization. This process makes use of existing optimization algorithms and losses correlations to identify those geometries that deliver the best balance of performance (i.e. Pareto-optimal points). This paper deals with a one-dimensional multi-objective and multi-point optimization of a single-stage steam turbine. Using a genetic optimization algorithm and an algebraic one-dimensional ideal gas-path model based on loss and deviation correlations, a code capable of performing the optimization of a predefined steam turbine stage was developed. More specifically, during this study the parameters modified (i.e. decision variables) to identify the best performing geometries were solidity and angles both for stator and rotor cascades, while the objective functions to maximize were totalto- static efficiency and specific work done. Finally, an accurate analysis of the obtained results was carried out.

Keywords: Steam turbine, optimization, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2748
12282 Contribution to the Query Optimization in the Object-Oriented Databases

Authors: Minyar Sassi, Amel Grissa-Touzi

Abstract:

Appeared toward 1986, the object-oriented databases management systems had not known successes knew five years after their birth. One of the major difficulties is the query optimization. We propose in this paper a new approach that permits to enrich techniques of query optimization existing in the object-oriented databases. Seen success that knew the query optimization in the relational model, our approach inspires itself of these optimization techniques and enriched it so that they can support the new concepts introduced by the object databases.

Keywords: Query, query optimization, relational databases, object-oriented databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
12281 Evaluating and Selecting Optimization Software Packages: A Framework for Business Applications

Authors: Waleed Abohamad, Amr Arisha

Abstract:

Owing the fact that optimization of business process is a crucial requirement to navigate, survive and even thrive in today-s volatile business environment, this paper presents a framework for selecting a best-fit optimization package for solving complex business problems. Complexity level of the problem and/or using incorrect optimization software can lead to biased solutions of the optimization problem. Accordingly, the proposed framework identifies a number of relevant factors (e.g. decision variables, objective functions, and modeling approach) to be considered during the evaluation and selection process. Application domain, problem specifications, and available accredited optimization approaches are also to be regarded. A recommendation of one or two optimization software is the output of the framework which is believed to provide the best results of the underlying problem. In addition to a set of guidelines and recommendations on how managers can conduct an effective optimization exercise is discussed.

Keywords: Complex Business Problems, Optimization, Selection Criteria, Software Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2910
12280 Application of Soft Computing Methods for Economic Dispatch in Power Systems

Authors: Jagabondhu Hazra, Avinash Sinha

Abstract:

Economic dispatch problem is an optimization problem where objective function is highly non linear, non-convex, non-differentiable and may have multiple local minima. Therefore, classical optimization methods may not converge or get trapped to any local minima. This paper presents a comparative study of four different evolutionary algorithms i.e. genetic algorithm, bacteria foraging optimization, ant colony optimization and particle swarm optimization for solving the economic dispatch problem. All the methods are tested on IEEE 30 bus test system. Simulation results are presented to show the comparative performance of these methods.

Keywords: Ant colony optimization, bacteria foraging optimization, economic dispatch, evolutionary algorithm, genetic algorithm, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
12279 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms

Authors: M. Dezvarei, S. Morovati

Abstract:

In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.

Keywords: Clonal algorithm, proton exchange membrane fuel cell, particle swarm optimization, real valued mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
12278 A Multi-objective Fuzzy Optimization Method of Resource Input Based on Genetic Algorithm

Authors: Tao Zhao, Xin Wang

Abstract:

With the increasing complexity of engineering problems, the traditional, single-objective and deterministic optimization method can not meet people-s requirements. A multi-objective fuzzy optimization model of resource input is built for M chlor-alkali chemical eco-industrial park in this paper. First, the model is changed into the form that can be solved by genetic algorithm using fuzzy theory. And then, a fitness function is constructed for genetic algorithm. Finally, a numerical example is presented to show that the method compared with traditional single-objective optimization method is more practical and efficient.

Keywords: Fitness function, genetic algorithm, multi-objectivefuzzy optimization, satisfaction degree membership function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
12277 Robust FACTS Controller Design Employing Modern Heuristic Optimization Techniques

Authors: A.K.Balirsingh, S.C.Swain, S. Panda

Abstract:

Recently, Genetic Algorithms (GA) and Differential Evolution (DE) algorithm technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of DE and GA optimization techniques, for flexible ac transmission system (FACTS)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques has been compared. Further, the optimized controllers are tested on a weekly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a FACTS-based controller, to enhance power system stability.

Keywords: Differential Evolution, Flexible AC TransmissionSystems (FACTS), Genetic Algorithm, Low Frequency Oscillations, Single-machine Infinite Bus Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
12276 Query Optimization Techniques for XML Databases

Authors: Su Cheng Haw, G. S. V. Radha Krishna Rao

Abstract:

Over the past few years, XML (eXtensible Mark-up Language) has emerged as the standard for information representation and data exchange over the Internet. This paper provides a kick-start for new researches venturing in XML databases field. We survey the storage representation for XML document, review the XML query processing and optimization techniques with respect to the particular storage instance. Various optimization technologies have been developed to solve the query retrieval and updating problems. Towards the later year, most researchers proposed hybrid optimization techniques. Hybrid system opens the possibility of covering each technology-s weakness by its strengths. This paper reviews the advantages and limitations of optimization techniques.

Keywords: indexing, labeling scheme, query optimization, XML storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
12275 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069
12274 Modeling of Dielectric Heating in Radio- Frequency Applicator Optimized for Uniform Temperature by Means of Genetic Algorithms

Authors: Camelia Petrescu, Lavinia Ferariu

Abstract:

The paper presents an optimization study based on genetic algorithms (GA-s) for a radio-frequency applicator used in heating dielectric band products. The weakly coupled electro-thermal problem is analyzed using 2D-FEM. The design variables in the optimization process are: the voltage of a supplementary “guard" electrode and six geometric parameters of the applicator. Two objective functions are used: temperature uniformity and total active power absorbed by the dielectric. Both mono-objective and multiobjective formulations are implemented in GA optimization.

Keywords: Dielectric heating, genetic algorithms, optimization, RF applicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
12273 PSO-based Possibilistic Portfolio Model with Transaction Costs

Authors: Wei Chen, Cui-you Yao, Yue Qiu

Abstract:

This paper deals with a portfolio selection problem based on the possibility theory under the assumption that the returns of assets are LR-type fuzzy numbers. A possibilistic portfolio model with transaction costs is proposed, in which the possibilistic mean value of the return is termed measure of investment return, and the possibilistic variance of the return is termed measure of investment risk. Due to considering transaction costs, the existing traditional optimization algorithms usually fail to find the optimal solution efficiently and heuristic algorithms can be the best method. Therefore, a particle swarm optimization is designed to solve the corresponding optimization problem. At last, a numerical example is given to illustrate our proposed effective means and approaches.

Keywords: Possibility theory, portfolio selection, transaction costs, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
12272 IBFO_PSO: Evaluating the Performance of Bio-Inspired Integrated Bacterial Foraging Optimization Algorithm and Particle Swarm Optimization Algorithm in MANET Routing

Authors: K. Geetha, P. Thangaraj, C. Rasi Priya, C. Rajan, S. Geetha

Abstract:

This paper presents the performance of Integrated Bacterial Foraging Optimization and Particle Swarm Optimization (IBFO_PSO) technique in MANET routing. The BFO is a bio-inspired algorithm, which simulates the foraging behavior of bacteria. It is effectively applied in improving the routing performance in MANET. In results, it is proved that the PSO integrated with BFO reduces routing delay, energy consumption and communication overhead.

Keywords: Ant Colony Optimization, Bacterial Foraging Optimization, Hybrid Routing Intelligent Algorithm, Naturally inspired algorithms, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
12271 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
12270 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: Piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
12269 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security

Authors: Inayat Ur Rehman, Georgia Sakellari

Abstract:

Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.

Keywords: Cloud computing, cloud monitoring, performance optimization, high availability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74
12268 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads

Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza

Abstract:

This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.

Keywords: Divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
12267 A Simple Adaptive Algorithm for Norm-Constrained Optimization

Authors: Hyun-Chool Shin

Abstract:

In this paper we propose a simple adaptive algorithm iteratively solving the unit-norm constrained optimization problem. Instead of conventional parameter norm based normalization, the proposed algorithm incorporates scalar normalization which is computationally much simpler. The analysis of stationary point is presented to show that the proposed algorithm indeed solves the constrained optimization problem. The simulation results illustrate that the proposed algorithm performs as good as conventional ones while being computationally simpler.

Keywords: constrained optimization, unit-norm, LMS, principle component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
12266 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704