
 

 

  

Abstract—The design of a steam turbine is a very complex 

engineering operation that can be simplified and improved thanks to 

computer-aided multi-objective optimization. This process makes use 

of existing optimization algorithms and losses correlations to identify 

those geometries that deliver the best balance of performance (i.e. 

Pareto-optimal points). 

This paper deals with a one-dimensional multi-objective and 

multi-point optimization of a single-stage steam turbine. Using a 

genetic optimization algorithm and an algebraic one-dimensional 

ideal gas-path model based on loss and deviation correlations, a code 

capable of performing the optimization of a predefined steam turbine 

stage was developed. More specifically, during this study the 

parameters modified (i.e. decision variables) to identify the best 

performing geometries were solidity and angles both for stator and 

rotor cascades, while the objective functions to maximize were total-

to-static efficiency and specific work done. 

Finally, an accurate analysis of the obtained results was carried 

out. 

 

Keywords—Steam turbine, optimization, genetic algorithms. 

NOMENCLATURE 

c Absolute flow velocity 

h Enthalpy 

L Specific turbine stage work 

T Temperature 

u Turbine rotor peripheral velocity 

w Relative flow velocity 

Greek symbols 

α
1c

 Outlet stator blade angle 

1cβ  Inlet rotor blade angle 

2cβ  Outlet rotor blade angle 

tsη  Total-to-static stage efficiency 

Rσ  Rotor cascade solidity 

Sσ  Stator cascade solidity 

Rε  Rotor flow deflection 

Subscript 

0 Upstream of stator cascade 

1 Downstream of stator cascade 

2 Downstream of rotor cascade 

is Isentropic 

m Axial component 

R Rotor 

 
A. Pellegrini and E. Benini are with the Department of Industrial 

Engineering, University of Padova, Via Venezia, 1 – 35131 Padova, Italy. 

S Stator 

u Tangential component 

Superscript 

0 Total quantity 

I. INTRODUCTION 

RADITIONAL approaches for turbine design are based 

either on simplified theoretical correlations or on 

empirical models built on collected data sets. Both of these 

methods suggest suitable ranges for the most relevant design 

parameters but rarely indicate the best solutions. 

To overcome these limitations, optimization algorithms are 

today widely adopted which allow automatically evaluating 

and comparing performance of many different solutions, thus 

leading to a real multi-objective design approach [1]. Multi-

point methods are also becoming quite popular among 

researchers and engineers as they make it possible to optimize 

a design considering more than one operating conditions. 

In the present paper, a one-dimensional multi-objective and 

multi-point optimization of a single-stage steam turbine is 

proposed. To reach this goal, an optimization algorithm and an 

algebraic one-dimensional, ideal gas-path, model based on 

loss and deviation correlations are coupled together. Design 

parameters are turbine cascade solidity and blade angles, both 

for stator and rotor cascades, while the objective functions to 

maximize are total-to-static efficiency and specific work done. 

II.  LOSS CORRELATION FOR PERFORMANCE PREDICTION 

Loss and deviation correlations are today widely used by 

turbines manufacturers in view of their capability to give 

reasonable on/off performance predictions. Such an approach 

is still recognized as the only viable to obtain rapid responses 

and is currently used for multiple scopes among which design 

and preliminary optimization of the operative fluid path. 

Several loss formulations are available in the open literature 

which make use of both algebraic models and look-up tables 

(based on empirical data) to calculate turbine stage 

performance using a mean line approach. However, since no 

definitive indications about their correct usage are available, 

the choice of loss formulation to use in this work was made on 

the bases of indications given in [2]. In this paper, the Craig & 

Cox performance prediction model, fully described in [4], [5], 

was used. Moreover, to evaluate tip leakage losses, not 

considered by Craig & Cox model, Ainley & Mathieson 

correlations were adopted [3]. 

As the entire optimization program was written in 

MATLAB language, the source code for Craig & Cox model 
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was an arranged version of the one used and tested in [2]. 

III. CODE IMPLEMENTATION AND BASELINE GEOMETRY 

A. Decision Variables and Objective Function 

Initially, code implementation required interfacing of 

MATLAB optimization function gamultiobj with Craig & Cox 

model. To complete this operation, objective functions and 

decision variables had to be established. 

As suggested by Craig & Cox model, decision variables 

were chosen among those having more influence on turbine 

performance. This led to define the following design variables: 

• Outlet stator blade angle 1cα ; 

• Stator cascade solidity Sσ ; 

• Inlet rotor blade angle 1cβ ; 

• Outlet rotor blade angle 2cβ ; 

• Rotor cascade solidity Rσ . 

Among them, cascade solidities influence mainly deviation 

angle, wall friction losses, and stall behavior, while blade 

angles influence mainly stator-rotor interaction, stall behavior, 

and rotor outflow conditions. 

Objective functions to maximize were defined as: 

• Specific turbine stage work 
0 0

0 2L h h= − ; 

• Total-to-static stage efficiency 

0 0

0 2

0

0 2,

ts

is

h h

h h
η

−
=

−
. 

A crucial aspect of the problem was that the objective 

functions chosen were conflicting targets; in fact, assuming u  

as a constant, specific work can be expressed as: 

 

1 2 1 2) )( (u u u u RL u uc w wc ε= −⋅ ⋅= − ∝        (1) 

 

However, as confirmed by Craig & Cox losses correlations, 

a high deflection ( Rε ) is associated with high profile losses 

and high secondary losses: this means that an increase in 

specific work causes a reduction in the efficiency. The 

solution of the problem will identify those values of the 

decision variables that give the best balance between 

efficiency and specific work. 

B. Geometrical and Operational Parameters 

To completely define the problem, all unmodified 

geometrical and operational parameters had to be set. To do 

this, we used as baseline geometry the test case known in 

literature as E/TU-3 (AGARD AR 275), i.e. is a subsonic 

single-stage gas turbine, whose geometrical parameters are 

listed in Table I. Note that all parameters varying with radius 

are given referring to their mid-span values. Moreover, rotor 

blades are unshrouded. 

 
 
 

 

 

TABLE I 

GEOMETRICAL PARAMETERS 

Parameter Value 

Hub diameter – Stator [mm] 340.0 

Hub diameter – Rotor [mm] 335.4 

Shroud diameter – Stator [mm] 450.0 

Shroud diameter – Rotor [mm] 450.0 

Pitch – Stator [mm] 95.5 

Pitch – Rotor [mm] 62.8 

Number of blades – Stator 20 

Number of blades – Rotor 31 

Axial distance – Stator/Rotor [mm] 54.0 

Inlet stator blade angle [deg] 0 

Outlet stator blade angle [deg] 68.9 

Inlet rotor blade angle [deg] 47.6 

Outlet rotor blade angle [deg] -57.5 

Tip clearance – Stator [mm] 0 

Tip clearance – Rotor [mm] 0.25 

 

Regarding operational parameters, as the operating fluid has 

changed from gas (original fluid) to steam (fluid used for the 

optimization), thermodynamic parameters were properly 

modified. More specifically, inlet total temperature and 

pressure were reset referring to existing steam turbines 

typically installed in thermoelectric power plants, while the 

range for corrected mass flow rate was calculated starting 

from the Kacker & Okapuu diagram. Because of the 

impossibility to calculate supersonic operating condition using 

Craig & Cox model, lower and upper limit for mass flow rate 

range were both set at lower values than the “optimum” mass 

flow rate suggested by Kacker & Okapuu diagram. This 

choice does not represent a limitation, as the optimization 

process will consequently modify the geometry. 

Unlike thermodynamic parameters, turbine rotational speed 

remained unchanged, as independent from the operational 

fluid used. New operational parameters are listed in Table II. 
 

TABLE II 
OPERATIONAL PARAMETERS 

Quantity Value 

Inlet total temperature [K] 733.15 

Inlet total pressure [bar] 20 

Minimum corrected mass flow rate [(Kg·K0.5)/(s·bar)] 35 

Maximum corrected mass flow rate [(kg·K0.5)/(s·bar)] 47 

Corrected mass flow rate step [(kg·K0.5)/(s·bar)] 1 

Rotational speed [rev/min] 7800 

C. Multi-Point Optimization 

In turbine optimization it is essential to know whether the 

machine will operate in a single fixed point or if it will work 

within a defined range of operating conditions. In the present 

paper, the latter case was considered which requires a multi-

point optimization approach. 

This approach operates evaluating objective functions in 

more than one operating points (e.g. at varying of mass flow 

rates) and using as “global” objective functions (i.e. those 

functions used by genetic algorithm) the average of each of 

the objective functions at varying of mass flow rate. 
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D. Genetic Algorithm Parameters 

Before launching the optimization, other parameters had to 

be defined. Among them the most relevant were: 

• A function to create the initial population: the two main 

alternatives are either to populate only the borders of the 

feasible domain or to uniformly populate all the feasible 

domain. In this optimization, we went for the second 

option; 

• Numbers of individuals produced at each generation. We 

used 50 individuals, as the minimum number of 

individuals suggested was between 2n (10 individuals) 

and 4n (20 individuals), being n the number of decision 

variables; 

• Crossover fraction: determines the fraction of individuals 

created through crossover of chromosomes taken from the 

previous generation; the complementary fraction is 

created through mutation. In this work the crossover 

fraction was set equal to 7/10; 

• Crossover function: determines how the crossover 

operation is carried out. Hereafter an intermediate 

crossover function was chosen, as it enhanced feasible 

domain exploration. 

IV. OPTIMIZATION CODE RUNS AND ANALYSIS OF RESULTS 

In this section, the most relevant results from the 

optimizations are shown. For each of them, the following 

parameters had to be properly set: side constraints, specific 

individuals in the initial population (if present), maximum 

number of generations, and number of individuals produced at 

each generation (if different from previously defined value of 

50 individuals). 

A. First Optimization Run 

This first optimization run was performed to investigate 

code and turbine behavior: for this reason, side constraints 

were set considering only limitations imposed by Craig & Cox 

model (i.e. correlations feasible domain, diagrams ranges, etc). 

1. Settings 

Being this an explorative optimization performed only to 

identify appropriate side constraint for next optimizations, 

maximum number of generations was limited to 100; number 

of individuals created at each generation was set equal to 50; 

no specific individuals were manually introduced in the first 

generation to avoid influencing the optimization results. Side 

constraints were adopted according to Table III. 
 
 

 

 
 
 

 
 

 

 
 

 

 
 

TABLE III 

SIDE CONSTRAINT – FIRST RUN 

Parameter Value 

Min outlet stator blade angle [deg] 45 

Max outlet stator blade angle [deg] 80 

Min inlet rotor blade angle [deg] - 10 

Max inlet rotor blade angle [deg] 60 

Min outlet rotor blade angle [deg] - 80 

Max outlet rotor blade angle [deg] - 45 

Min stator cascade solidity 0.9 

Max stator cascade solidity 2.5 

Min rotor cascade solidity 0.9 

Max rotor cascade solidity 2.5 

 

Side constraint ranges are hereafter explained: 

• All cascade solidity constraints depend on Craig & Cox 

diagrams limitations; 

• Minimum inlet rotor blade angle was set as a consequence 

of previous calculations showing that, for angle smaller 

than -10 deg, the degree of reaction became higher than 

0.5 (condition known to reduce both efficiency and 

specific work done in steam turbines); 

• Max outlet stator blade angle was set considering that 

large angles would cause stator outlet section restriction 

and higher flow deflection. As both phenomena would 

produce velocity increase, max outlet stator blade angle 

constraint was set to limit velocity and avoid sonic speed 

in the throat section; 

• Inlet rotor blade angle range was set referring to typical 

0.5 degree of reaction geometry (inlet rotor blade angle 

around 0 deg) and typical low reaction geometry (inlet 

rotor blade angle approximately equal to outlet rotor blade 

angle); 

• Outlet rotor blade angle range was suggested by previous 

calculation that identified with 2cβ ≈ -67 deg the 

condition of axial absolute flow at rotor outlet. 

Eventually, only for this run, corrected mass flow rate step 

was reduced to 0.5 [(kg·K
0.5

)/(s·bar)] in order to have higher 

resolution in plotting maps, making easier to identify 

numerical problems in the code, if present. 

2. Results 

Main results of the optimization are shown in the objective 

functions domain, where the evolution of Pareto front at each 

generation can be plotted. In Fig. 1 to Fig. 4, Pareto front 

evolution is presented; in these diagrams x-axis represents the 

objective function 1 tsη− , while y-axis represents the 

objective function L− . Note that alongside each front the 

corresponding generation number is indicated. 
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Fig. 1 Pareto front at 1st and 2nd generations – 1st optimization 

 

 

Fig. 2 Pareto front at 3rd and 4th generations – 1st optimization 

 

 

Fig. 3 Pareto front at 5th and 6th generations – 1st optimization 

 

Fig. 4 Pareto front at 90th and 100th generations – 1st optimization 

 

It is clear that Pareto front evolution is more pronounced 

during the first generations, as the genetic algorithm starts 

from a casual population and evolves towards populations 

with higher fitness. 

Another relevant information is shown in Fig. 5, where 

total-to-static efficiency vs. ratio of specific work to inlet total 

temperature is plotted for the maximum efficiency individual 

and the maximum specific work individual on the last Pareto 

front calculated (100
th

 generation). 

 

 

Fig. 5 tsη  vs. 
0 0

0/h T∆  – Maximum tsη  and maximum L 

individuals – Pareto front of last generation – 1st optimization 

 

Each of the plotted points, belonging to a single curve, 

corresponds to a different value of mass flow rate considered 

to carry out the desired multi-point optimization. Once again, 

Fig. 5 confirms that the objective functions chosen represent 

conflicting targets. 

Eventually, other useful diagrams that helped to carry out 

results analysis were: decision variables vs. generation number 

(see Fig. 6 to Fig. 10) and objective functions vs. decision 

variables on the last generation Pareto front (see Fig. 11 to Fig. 
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15). The first type of diagram suggested new side constraints 

for the next optimizations, while the second type helped 

identifying decision variables influence on turbine behavior. 

 

 

Fig. 6 1cα  vs. generation number – 1st optimization 

 

 

Fig. 7 Sσ  vs. generation number – 1st optimization 

 

Fig. 8 
1cβ  vs. generation number – 1st optimization 

 

 

Fig. 9 2cβ  vs. generation number – 1st optimization 

 

 

Fig. 10 
Rσ  vs. generation number – 1st optimization 
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By observing Fig. 6 to Fig. 10, two different behaviors are 

shown: while solidities are widely spread over the plotted 

range of values, angles converge to well defined and restricted 

ranges. This information will be used to set new side 

constraint at the beginning of the next optimization. 

Fig. 7 reports the effect of mutation operator on decision 

variables progression: in this specific case, between 30
th

 and 

45
th

 generations the minimum value of solidity is around 1.4; 

shortly after, some new individuals appear having lower 

values than 1.4. This is a clear effect of the mutation operator, 

as it produced individuals located outside the range of values 

characterizing previous generations. Note that the new 

individuals manage to survive and reproduce, getting even to 

the last generation. 

As mentioned above, other useful information can be 

obtained by studying Fig. 11 to Fig. 15, where efficiency vs. 

decision variables diagrams is plotted. 

 

 

Fig. 11 
tsη  vs. 

1cα  – last Pareto front – 1st optimization 

 

 

Fig. 12 tsη  vs. Sσ  – last Pareto front – 1st optimization 

 

Fig. 13 tsη  vs. 1cβ  – last Pareto front – 1st optimization 

 

 

Fig. 14 
tsη  vs. 

2cβ  – last Pareto front – 1st optimization 

 

 

Fig. 15 tsη  vs. Rσ  – last Pareto front – 1st optimization 
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While points plotted in Fig. 13 and Fig. 15 are widely 

scattered, the examination Fig. 11, Fig. 12, and Fig. 14 can give 

useful information about turbine operation. 

Starting from individuals with the highest efficiency and 

moving toward low efficiency values (i.e. high specific work 

values), both 1cα  and Sσ  progressively increase, causing 

higher flow deflection in the stator cascade, which means 

growing values for 1uc . Simultaneously, 2cβ  angle remains 

constant and equal to the value which gives almost axial 

absolute velocity at rotor outlet, thus limiting kinetic energy 

losses at turbine outlet. 

Reaching values of 0.73tsη < , a new phenomenon comes 

up: 1cα  cannot increase its value anymore and, at the same 

time, 2cβ  angle starts decreasing. This behavior can be 

explained remembering that Craig & Cox model cannot 

calculate sonic conditions; because of this, the optimization 

code was programmed to exclude all individuals producing 

sonic or supersonic conditions either at stator or at rotor outlet. 

In fact, both increase of 1cα  and of Sσ  cause reduction of 

stator outlet section, and increase in flow deflection through 

stator cascade, that is an unremitting increase of speed at stator 

outlet. For this reason, once sonic speed is reached at stator 

outlet, 1cα  is not allowed to increase anymore; in this 

situation, the only way to increase furthermore specific work 

done, despite of efficiency reduction, is to investigate higher 

deflection in the rotor cascade by increasing 2| |cβ , which 

means by increasing 2| |uc  (remember that specific work can 

be expressed as in (1)). Fig. 14 confirms this explanation. 

B. Second Optimization Run 

The second optimization was configured considering 

previously obtained results. Side constraints were set 

accordingly with decision variables evolutions shown in Fig. 6 

to 10 paying particular attention to the sonic problem already 

encountered, but without unwisely limiting the decision 

variables domain. 

1. Settings 

Unlike the first run, with this optimization we aimed to find 

the Pareto-optimal front of the considered problem. For this 

reason the maximum number of generation was increased to 

250, while keeping the number of individuals at each 

generation equals to 50. No individuals were manually 

introduced in the starting population, to allow a free evolution 

starting from a completely casual population. Side constraints 

were set as listed in Table IV. 

 

 

 

 

 

 

 

TABLE IV 

SIDE CONSTRAINT – SECOND RUN 

Parameter Value 

Min outlet stator blade angle [deg] 45 

Max outlet stator blade angle [deg] 72.5 

Min inlet rotor blade angle [deg] - 10 

Max inlet rotor blade angle [deg] 60 

Min outlet rotor blade angle [deg] - 72.5 

Max outlet rotor blade angle [deg] - 45 

Min stator cascade solidity 0.9 

Max stator cascade solidity 2.5 

Min rotor cascade solidity 0.9 

Max rotor cascade solidity 2.5 

 

Note that multi-point optimization was performed adopting 

a 1 [(kg·K
0.5

)/(s·bar)] step for corrected mass flow rate. 

2. Results 

First, to analyze optimization results Pareto fronts evolution 

was studied and compared to previous results (see Fig. 16 to 

Fig. 20). Note that alongside each front the corresponding 

generation number is indicated. 

As before, Pareto front moves faster during the first 

generations, as initial population is still randomly generated. 

On the other hand, it is important to observe that also during 

last generations improvements take place (see Fig. 20), but are 

inevitably slower. 

 

 

Fig. 16 Pareto front at 1st and 2nd generations – 2nd optimization 
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Fig. 17 Pareto front at 3rd and 4th generations – 2nd optimization 

 

 

Fig. 18 Pareto front at 5th and 6th generations – 2nd optimization 

 

 

Fig. 19 Pareto front at 96th and 108th generations – 2nd optimization 

 

Fig. 20 Pareto front at 240th and 250th generations – 2nd optimization 

 

As can be seen by comparing Fig. 20 and Fig. 4, the Pareto 

front now obtained for the last generation is slightly shifted 

downward. This means that the solutions given by the second 

optimization provide higher values of specific work without 

reduction of efficiency; this is likely to be caused by the larger 

number of generations calculated in this second optimization. 

Referring to the Pareto front of the 250
th

 generation, Fig. 21 

shows total-to-static efficiency vs. ratio on specific work to 

inlet total temperature both for maximum efficiency and for 

maximum specific work individuals. By comparing Fig. 21 

and Fig. 5, it is confirmed what observed above: the current 

optimization has identified geometries capable of giving 

higher value of specific work, without any reduction in 

maximum efficiency. 

Once again, other diagrams used to carry out results 

analysis were: decision variables vs. generation number (see 

Fig. 22 to Fig. 26) and objective functions vs. decision 

variables on the last generation Pareto front (see Fig. 27, Fig. 

11 to Fig. 31). 

 

 

Fig. 21 
tsη  vs. 

0 0

0/h T∆  – Maximum 
tsη  and maximum L 

individuals – Pareto front of last generation – 2nd optimization 
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Fig. 22 
1cα  vs. generation number – 2nd optimization 

 

 

Fig. 23 
Sσ  vs. generation number – 2nd optimization 

 

 

Fig. 24 
1cβ  vs. generation number – 2nd optimization 

 

Fig. 25 
2cβ  vs. generation number – 2nd optimization 

 

 

Fig. 26 Rσ  vs. generation number – 2nd optimization 

 

Fig. 22 to 26 are in good agreement with what already 

observed in the previous optimization, with the only exception 

of the convergence range of values for 1cβ  (see Fig. 8 and 24). 

This fact is probably attributable both to different degree of 

convergence and to different side constraint for the problem. 

Eventually, objective functions vs. decision variables 

diagrams were plotted to study whether modified side 

constraints had solved the problem of sonic condition at stator 

outlet or not (see Fig. 27 to31). In these diagrams, points are 

distributed much more regularly than those obtained in the 

previous optimization: while before for 0.73tsη ≃  

distribution discontinuities were present (see Fig. 11 and Fig. 

12), now decision variables vary almost continuously. 

The obtained results confirm that changes applied to side 

constraint values were correct and solved the sonic problem. 

This information was used to set up the third and conclusive 

optimization. 
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Fig. 27 tsη  vs. 1cα  – last Pareto front – 2nd optimization 

 

 

Fig. 28 
tsη  vs. 

Sσ  – last Pareto front – 2nd optimization 

 

 

Fig. 29 tsη  vs. 1cβ  – last Pareto front – 2nd optimization 

 

Fig. 30 tsη  vs. 2cβ  – last Pareto front – 2nd optimization 

 

 

Fig. 31 tsη  vs. Rσ  – last Pareto front – 2nd optimization 

C. Third Optimization Run 

The third and last optimization was performed to identify 

the real Pareto front of our problem. Being the conclusive 

optimization, a more accurate results analysis was carried out. 

1. Settings 

To facilitate the maximum improvement of the Pareto front, 

the following settings were adopted: maximum number of 

generations increased to 300; completely free initial 

population; number of individuals at each generation equal to 

50; step for corrected mass flow rate equals to 1 

[(kg·K
0.5

)/(s·bar)]. Eventually, side constraints were set as 

listed in Table V (slightly modified from values used for the 

second run). 
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TABLE V 

SIDE CONSTRAINT – THIRD RUN 

Parameter Value 

Min outlet stator blade angle [deg] 45 

Max outlet stator blade angle [deg] 72 

Min inlet rotor blade angle [deg] - 10 

Max inlet rotor blade angle [deg] 60 

Min outlet rotor blade angle [deg] - 72 

Max outlet rotor blade angle [deg] - 45 

Min stator cascade solidity 0.9 

Max stator cascade solidity 2.5 

Min rotor cascade solidity 0.9 

Max rotor cascade solidity 2.5 

2. Results 

The Pareto front evolution is comparable to the one 

observed during the previous optimization; because of this, 

only the last Pareto fronts was be plotted (see Fig. 32; 

alongside each front is indicated the corresponding generation 

number). Note that Fig. 20 and 32 are virtually identical which 

means that no improvement was obtained by simply 

increasing the number of generations. This fact suggested that 

the Pareto front found both by the second and by the third 

optimizations was the real Pareto front for our problem. This 

hypothesis will be further investigated hereafter. 

 

 

Fig. 32 Pareto front at 285th and 300th generations – 3rd optimization 

 

Now, as both decision variables vs. generation number 

diagrams and objective functions vs. decision variables 

diagrams were very similar to those obtained previously, in 

this case we focused on turbine maps for three individuals 

chosen on the last Pareto front: the first individual with 

maximum efficiency (see Fig. 33 and 34), the second with a 

balance of efficiency and specific work efficiency (see Fig. 35 

and Fig. 36), and the third with maximum specific work done 

(see Fig. 37 and Fig. 38). 

 

Fig. 33 
tsη  vs. corrected mass flow rate – maximum efficiency 

individual – 3rd optimization 

 

 

Fig. 34 Ratio of L to inlet total temperature vs. corrected mass flow 

rate – maximum efficiency individual – 3rd optimization 

 

 

Fig. 35 tsη  vs. corrected mass flow rate – maximum efficiency, and 

balanced individuals – 3rd optimization 
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Fig. 36 Ratio of L to inlet total temperature vs. corrected mass flow 

rate – maximum efficiency, and balanced individual 

 

 

Fig. 37 
tsη  vs. corrected mass flow rate – maximum efficiency, and 

maximum specific work individuals 

 

 

Fig. 38 Ratio of L to inlet total temperature vs. corrected mass flow 

rate – maximum efficiency, and maximum specific work individuals 

For the three representative individuals considered above 

(to plot the turbine maps), corresponding decision variables 

values are listed in Table VI. 
 

TABLE VI 
DECISION VARIABLE VALUES – MOST SIGNIFICANT INDIVIDUALS 

Variable 
Max tsη  

individual 

Balanced 

individual 

Max L 

individual 

1cα  [deg] 68.241 71.692 71.893 

Sσ  1.1197 1.4077 2.448 

1cβ  [deg] 37.971 46.141 48.678 

2cβ  [deg] - 64.812 - 66.792 - 68.753 

Rσ  1.2274 1.5139 2.0807 

 

At this point we verified that the obtained results and 

decision variables, even if generated exclusively by the 

genetic algorithm, agreed with fluid dynamic considerations. 

Starting from the individual having higher efficiency, moving 

toward the individual giving the higher specific work we 

observed that: 

1. 1cα  value increases. This is reasonable as it is associated 

with an increase in 1uc  and, through (1), with an increase 

in L. At the same time, higher deflection causes reduction 

of efficiency. 

2. 
Sσ  value increases. This is reasonable too, as variations 

in 
Sσ  has similar effect to variations in 

1cα . 

3. 
1cβ  value increases. This is due to stator-rotor coupling: 

to avoid bad incidence at rotor inlet, when 1cα  value 

increase, 1cβ  value must increase too. 

4. 2| |cβ  value increases. This is reasonable as we know 

that maximum efficiency individual has almost axial 

absolute flow at rotor outlet, which means that increases 

in 
2| |cβ  value cause increases in 

2| |uc  value, that 

means higher L, but lower efficiency. 

5. Rσ  value increases. This can be explained in the same 

way of 
Sσ  value increase. 

This means that the obtained results are consistent with 

fluid dynamic phenomena. 

To complete this analysis, we eventually verified that the 

Pareto front obtained at the 300
th

 generation was really the 

Pareto-optimal front of our problem. This operation was 

carried out by launching three local optimizations: the first one 

around the maximum efficiency individual, the second one 

around the balanced individual, and the third one around the 

maximum specific work individual. To modify the explored 

domain in each of the three cases, we manually introduced in 

the initial population individuals belonging to the considered 

Pareto front; moreover, we properly modified side constraint. 

Eventually, being local optimization, the maximum number of 
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generations was limited to 50. 

Hereafter side constraints adopted are listed (Tables VII-IX) 

and the corresponding Pareto fronts obtained, together with 

the manually introduced initial individuals (Fig. 39-Fig. 41). 
 

TABLE VII 

SIDE CONSTRAINT – FIRST LOCAL RUN – MAXIMUM EFFICIENCY 

Parameter Value 

Min outlet stator blade angle [deg] 67 

Max outlet stator blade angle [deg] 71 

Min inlet rotor blade angle [deg] 25 

Max inlet rotor blade angle [deg] 46 

Min outlet rotor blade angle [deg] - 67 

Max outlet rotor blade angle [deg] - 64.5 

Min stator cascade solidity 1 

Max stator cascade solidity 1.75 

Min rotor cascade solidity 1.15 

Max rotor cascade solidity 1.5 

 

 

Fig. 39 Pareto front at 45th and 50th generations – 1st local 

optimization (maximum efficiency) 

 
TABLE VIII 

SIDE CONSTRAINT – SECOND LOCAL RUN – BALANCED 

Parameter Value 

Min outlet stator blade angle [deg] 70 

Max outlet stator blade angle [deg] 71.5 

Min inlet rotor blade angle [deg] 30 

Max inlet rotor blade angle [deg] 48 

Min outlet rotor blade angle [deg] - 67.5 

Max outlet rotor blade angle [deg] - 65 

Min stator cascade solidity 1.25 

Max stator cascade solidity 1.75 

Min rotor cascade solidity 1.4 

Max rotor cascade solidity 1.7 

 

Fig. 40 Pareto front at 45th and 50th generations – 2nd local 

optimization (balanced performance) 
 

TABLE IX 

SIDE CONSTRAINT – THIRD LOCAL RUN – MAXIMUM SPECIFIC WORK 

Parameter Value 

Min outlet stator blade angle [deg] 71 

Max outlet stator blade angle [deg] 75 

Min inlet rotor blade angle [deg] 36 

Max inlet rotor blade angle [deg] 52 

Min outlet rotor blade angle [deg] - 72 

Max outlet rotor blade angle [deg] - 65 

Min stator cascade solidity 2 

Max stator cascade solidity 2.5 

Min rotor cascade solidity 0.9 

Max rotor cascade solidity 2.5 

 

 

Fig. 41 Pareto front at 45th and 50th generations – 3rd local 

optimization (maximum specific work) 

 

Looking at numerical values, it is clear that this local 

optimization did not manage to significantly reduce objective 

functions values. This eventually suggested that the Pareto 

front obtained at the 300
th
 generation of the 3

rd
 global 

optimization could be considered as the real Pareto-optimal 

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:7, No:7, 2013 

1526International Scholarly and Scientific Research & Innovation 7(7) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
7,

 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
64

37
.p

df



 

 

front for our problem. 

V. CONCLUSIONS 

The results were presented of a study of the suitability of 

optimization algorithms to steam turbine design. The code 

developed proved its ability to identify the Pareto-optimal 

solutions, providing the best balance of total-to-static 

efficiency and specific work done. In fact, geometrical 

parameters generated by the optimization approach were in 

perfect agreement with fluid dynamic considerations. 

Moreover, the study emphasized the relevance of side 

constraints values in influencing the degree of convergence 

attainable by the solution. 

This said the developed code is an excellent starting point to 

carry out an optimized turbine design: due to extremely fast 

objective functions evaluation, it can explore wide decision 

variables domains, managing to locate the region giving 

Pareto-optimal individuals. At the same time, it is important to 

keep in mind that even modern algebraic one-dimensional 

losses and deviation models can be slightly inaccurate; for this 

reason one-dimensional optimization must always be followed 

by CFD simulations either to confirm or to revise previously 

obtained results. 

Eventually, this code can be easily modified to change both 

decision variables and objective functions in type and 

numbers; moreover, a stage stacking option can be introduced, 

allowing to optimize not only individual turbine stages but 

also entire multi-stage turbines. 
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