Search results for: power system protection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10441

Search results for: power system protection

10411 Modal Analysis of Power System with a Microgrid

Authors: Burak Yildirim, Muhsin Tunay Gençoğlu

Abstract:

A microgrid (MG) is a small power grid composed of localized medium or low level power generation, storage systems, and loads. In this paper, the effects of a MG on power systems voltage stability are shown. The MG model, designed to demonstrate the effects of the MG, was applied to the IEEE 14 bus power system which is widely used in power system stability studies. Eigenvalue and modal analysis methods were used in simulation studies. In the study results, it is seen that MGs affect system voltage stability positively by increasing system voltage instability limit value for buses of a power system in which MG are placed.

Keywords: Eigenvalue analysis, microgrid, modal analysis, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
10410 Enhance Power Quality by HVDC System, Comparison Technique between HVDC and HVAC Transmission Systems

Authors: Smko Zangana, Ergun Ercelebi

Abstract:

The alternating current is the main power in all industries and other aspects especially for the short and mid distances, but as far as long a distance which exceeds 500 KMs, using the alternating current technically will face many difficulties and more costs because it's difficult to control the current and also other restrictions. Therefore, recently those reasons led to building transmission lines HVDC to transmit power for long distances. This document presents technical comparison and assessments for power transmission system among distances either ways and studying the stability of the system regarding the proportion of losses in the actual power sent and received between both sides in different systems and also categorizing filters used in the HVDC system and its impact and effect on reducing Harmonic in the power transmission. MATLAB /Simulink simulation software is used to simulate both HVAC & HVDC power transmission system topologies.

Keywords: HVAC power system, HVDC power system, power system simulation (MATLAB), the alternating current, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
10409 Using the Schunt Active Power Filter for Compensation of the Distorted and Umbalanced Power System Voltage

Authors: I. Habi, M. Bouguerra, D. Ouahdi, H. Meglouli

Abstract:

In this paper, we apply the PQ theory with shunt active power filter in an unbalanced and distorted power system voltage to compensate the perturbations generated by non linear load. The power factor is also improved in the current source. The PLL system is used to extract the fundamental component of the even sequence under conditions mentioned of the power system voltage.

Keywords: Converter, power filter, harmonies, non-linear load, pq theory, PLL, unbalanced voltages, distorted voltages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
10408 Design of AC Electronics Load Surge Protection

Authors: N. Mungkung, S. Wongcharoen, C. Sukkongwari, Somchai Arunrungrasmi

Abstract:

This study examines the design and construction of AC Electronics load surge protection in order to carry electric surge load arisen from faults in low voltage electricity system (single phase/220V) by using the principle of electronics load clamping voltage during induction period so that electric voltage could go through to safe load and continue to work. The qualification of the designed device could prevent both transient over voltage and voltage swell. Both will work in cooperation, resulting in the ability to improve and modify the quality of electrical power in Thailand electricity distribution system more effective than the past and help increase the lifetime of electric appliances, electric devices, and electricity protection equipments.

Keywords: Electronics Load, Transient Over Voltage, Voltage Swell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
10407 Energy Efficiency and Renewable for Power System in Macedonia

Authors: Tomislav Stambolic, Anton Causevski

Abstract:

The deficit of power supply in Macedonia is almost 30% or reached up to 3000 GWh in a year. The existing thermal and hydro power plants are not enough to cover the power and energy, so the import increases every year. Therefore, in order to have more domestic energy supply, the new trends in renewable and energy efficiency should be implemented in power sector. The paper gives some perspectives for development of the power system in Macedonia, taking into account the growth of electricity demand and in the same time with implementation of renewable and energy efficiency. The development of power system is made for the period up to 2030 with the period of every 5 years.

Keywords: Energy, Power System, Renewable, Efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
10406 Hybrid Energy Harvesting System with Energy Storage Management

Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia

Abstract:

In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.

Keywords: Supercapacitors, energy storage, electronic overvoltage protection, energy harvesting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49
10405 Static Voltage Stability Assessment Considering the Power System Contingencies using Continuation Power Flow Method

Authors: Mostafa Alinezhad, Mehrdad Ahmadi Kamarposhti

Abstract:

According to the increasing utilization in power system, the transmission lines and power plants often operate in stability boundary and system probably lose its stable condition by over loading or occurring disturbance. According to the reasons that are mentioned, the prediction and recognition of voltage instability in power system has particular importance and it makes the network security stronger.This paper, by considering of power system contingencies based on the effects of them on Mega Watt Margin (MWM) and maximum loading point is focused in order to analyse the static voltage stability using continuation power flow method. The study has been carried out on IEEE 14-Bus Test System using Matlab and Psat softwares and results are presented.

Keywords: Contingency, Continuation Power Flow, Static Voltage Stability, Voltage Collapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
10404 Stable Tending Control of Complex Power Systems: An Example of Localized Design of Power System Stabilizers

Authors: Wenjuan Du

Abstract:

The phase compensation method was proposed based on the concept of the damping torque analysis (DTA). It is a method for the design of a PSS (power system stabilizer) to suppress local-mode power oscillations in a single-machine infinite-bus power system. This paper presents the application of the phase compensation method for the design of a PSS in a multi-machine power system. The application is achieved by examining the direct damping contribution of the stabilizer to the power oscillations. By using linearized equal area criterion, a theoretical proof to the application for the PSS design is presented. Hence PSS design in the paper is an example of stable tending control by localized method.

Keywords: Phase compensation method, power system small-signal stability, power system stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
10403 Approach to Implementation of Power Management with Load Prioritizations in Modern Civil Aircraft

Authors: Brice Nya, Detlef Schulz

Abstract:

Any use of energy in industrial productive activities is combined with various environment impacts. Withintransportation, this fact was not only found among land transport, railways and maritime transport, but also in the air transport industry. An effective climate protection requires strategies and measures for reducing all greenhouses gas emissions, in particular carbon dioxide, and must take into account the economic, ecologic and social aspects. It seem simperative now to develop and manufacture environmentally friendly products and systems, to reduce consumption and use less resource, and to save energy and power. Today-sproducts could better serve these requirements taking into account the integration of a power management system into the electrical power system.This paper gives an overview of an approach ofpower management with load prioritization in modernaircraft. Load dimensioning and load management strategies on current civil aircraft will be presented and used as a basis for the proposed approach.

Keywords: Load management, power management, electrical load analysis, flight mission, power load profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
10402 Dynamic Economic Dispatch Constrained by Wind Power Weibull Distribution: A Here-and-Now Strategy

Authors: Mostafa A. Elshahed, Magdy M. Elmarsfawy, Hussain M. Zain Eldain

Abstract:

In this paper, a Dynamic Economic Dispatch (DED) model is developed for the system consisting of both thermal generators and wind turbines. The inclusion of a significant amount of wind energy into power systems has resulted in additional constraints on DED to accommodate the intermittent nature of the output. The probability of stochastic wind power based on the Weibull probability density function is included in the model as a constraint; A Here-and-Now Approach. The Environmental Protection Agency-s hourly emission target, which gives the maximum emission during the day, is used as a constraint to reduce the atmospheric pollution. A 69-bus test system with non-smooth cost function is used to illustrate the effectiveness of the proposed model compared with static economic dispatch model with including the wind power.

Keywords: Dynamic Economic Dispatch, StochasticOptimization, Weibull Distribution, Wind Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970
10401 The Influence of the Commons Structure Modification on the Active Power Losses Allocation

Authors: O. Pop, C. Barbulescu, M. Nemes, St. Kilyeni

Abstract:

The tracing methods determine the contribution the power system sources have in their supplying. These methods can be used to assess the transmission prices, but also to recover the transmission fixed cost. In this paper is presented the influence of the modification of commons structure has on the specific price of transfer and on active power losses. The authors propose a power losses allocation method, based on Kirschen-s method. The system operator must make use of a few basic principles about allocation. The only necessary information is the power flows on system branches and the modifications applied to power system buses. In order to illustrate this method, the 25-bus test system is used, elaborated within the Electrical Power Engineering Department, from Timisoara, Romania.

Keywords: Power systems, P-U bus, P-Q bus, loss allocation, traceability methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
10400 A 5-V to 30-V Current-Mode Boost Converter with Integrated Current Sensor and Power-on Protection

Authors: Jun Yu, Yat-Hei Lam, Boris Grinberg, Kevin Chai Tshun Chuan

Abstract:

This paper presents a 5-V to 30-V current-mode boost converter for powering the drive circuit of a micro-electro-mechanical sensor. The design of a transconductance amplifier and an integrated current sensing circuit are presented. In addition, essential building blocks for power-on protection such as a soft-start and clamp block and supply and clock ready block are discussed in details. The chip is fabricated in a 0.18-μm CMOS process. Measurement results show that the soft-start and clamp block can effectively limit the inrush current during startup and protect the boost converter from startup failure.

Keywords: Boost Converter, Current Sensing, Power-on protection, Step-up Converter, Soft-start.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
10399 Design of Power System Stabilizer with Neuro-Fuzzy UPFC Controller

Authors: U. Ramesh Babu, V. Vijay Kumar Reddy, S. Tara Kalyani

Abstract:

The growth in the demand of electrical energy is leading to load on the Power system which increases the occurrence of frequent oscillations in the system. The reason for the oscillations is due to the lack of damping torque which is required to dominate the disturbances of Power system. By using FACT devices, such as Unified Power Flow Controller (UPFC) can control power flow, reduce sub-synchronous resonances and increase transient stability. Hence, UPFC is used to damp the oscillations occurred in Power system. This research focuses on adapting the neuro fuzzy controller for the UPFC design by connecting the infinite bus (SMIB - Single machine Infinite Bus) to a linearized model of synchronous machine (Heffron-Phillips) in the power system. This model gains the capability to improve the transient stability and to damp the oscillations of the system.

Keywords: Power System, UPFC, (ANFIS) Adaptive Neuro Fuzzy Inference System, transient, Low frequency oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
10398 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
10397 The Use of Voltage Stability Indices and Proposed Instability Prediction to Coordinate with Protection Systems

Authors: R. Leelaruji, V. Knazkins

Abstract:

This paper proposes a methodology for mitigating the occurrence of cascading failure in stressed power systems. The methodology is essentially based on predicting voltage instability in the power system using a voltage stability index and then devising a corrective action in order to increase the voltage stability margin. The paper starts with a brief description of the cascading failure mechanism which is probable root cause of severe blackouts. Then, the voltage instability indices are introduced in order to evaluate stability limit. The aim of the analysis is to assure that the coordination of protection, by adopting load shedding scheme, capable of enhancing performance of the system after the major location of instability is determined. Finally, the proposed method to generate instability prediction is introduced.

Keywords: Blackouts, cascading failure, voltage stability indices, singular value decomposition, load shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
10396 New Strategy Agents to Improve Power System Transient Stability

Authors: Mansour A. Mohamed, George G. Karady, Ali M. Yousef

Abstract:

This paper proposes transient angle stability agents to enhance power system stability. The proposed transient angle stability agents divided into two strategy agents. The first strategy agent is a prediction agent that will predict power system instability. According to the prediction agent-s output, the second strategy agent, which is a control agent, is automatically calculating the amount of active power reduction that can stabilize the system and initiating a control action. The control action considered is turbine fast valving. The proposed strategies are applied to a realistic power system, the IEEE 50- generator system. Results show that the proposed technique can be used on-line for power system instability prediction and control.

Keywords: Multi-agents, Fast Valving, Power System Transient Stability, Prediction methods,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
10395 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
10394 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: Emergence procedure, expert system, operator support, PWR nuclear power plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
10393 Maximum Power Point Tracking Based on Estimated Power for PV Energy Conversion System

Authors: Zainab Almukhtar, Adel Merabet

Abstract:

In this paper, a method for maximum power point tracking of a photovoltaic energy conversion system is presented. This method is based on using the difference between the power from the solar panel and an estimated power value to control the DC-DC converter of the photovoltaic system. The difference is continuously compared with a preset error permitted value. If the power difference is more than the error, the estimated power is multiplied by a factor and the operation is repeated until the difference is less or equal to the threshold error. The difference in power will be used to trigger a DC-DC boost converter in order to raise the voltage to where the maximum power point is achieved. The proposed method was experimentally verified through a PV energy conversion system driven by the OPAL-RT real time controller. The method was tested on varying radiation conditions and load requirements, and the Photovoltaic Panel was operated at its maximum power in different conditions of irradiation.

Keywords: Control system, power error, solar panel, MPPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
10392 Power Management Strategy for Solar-Wind-Diesel Stand-alone Hybrid Energy System

Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim

Abstract:

This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.

Keywords: Solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4724
10391 Wavelet based ANN Approach for Transformer Protection

Authors: Okan Özgönenel

Abstract:

This paper presents the development of a wavelet based algorithm, for distinguishing between magnetizing inrush currents and power system fault currents, which is quite adequate, reliable, fast and computationally efficient tool. The proposed technique consists of a preprocessing unit based on discrete wavelet transform (DWT) in combination with an artificial neural network (ANN) for detecting and classifying fault currents. The DWT acts as an extractor of distinctive features in the input signals at the relay location. This information is then fed into an ANN for classifying fault and magnetizing inrush conditions. A 220/55/55 V, 50Hz laboratory transformer connected to a 380 V power system were simulated using ATP-EMTP. The DWT was implemented by using Matlab and Coiflet mother wavelet was used to analyze primary currents and generate training data. The simulated results presented clearly show that the proposed technique can accurately discriminate between magnetizing inrush and fault currents in transformer protection.

Keywords: Artificial neural network, discrete wavelet transform, fault detection, magnetizing inrush current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
10390 Dynamic Control Modeling and Simulation of a UPFC-SMES Compensator in Power Systems

Authors: K. Saravanan, R. Anita

Abstract:

Flexible AC Transmission Systems (FACTS) is granting a new group of advanced power electronic devices emerging for enhancement of the power system performance. Unified Power Flow Controller (UPFC) is a recent version of FACTS devices for power system applications. The back-up energy supply system incorporated with UPFC is providing a complete control of real and reactive power at the same time and hence is competent to improve the performance of an electrical power system. In this article, backup energy supply unit such as superconducting magnetic energy storage (SMES) is integrated with UPFC. In addition, comparative exploration of UPFC–battery, UPFC–UC and UPFC–SMES performance is evaluated through the vibrant simulation by using MATLAB/Simulink software.

Keywords: Power system, FACTS, UPFC, DC-DC chopper, battery, UC, SMES.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
10389 The Robot Hand System that can Control Grasping Power by SEMG

Authors: Tsubasa Seto, Kentaro Nagata, Kazushige Magatani

Abstract:

SEMG (Surface Electromyogram) is one of the bio-signals and is generated from the muscle. And there are many research results that use forearm EMG to detect hand motions. In this paper, we will talk about our developed the robot hand system that can control grasping power by SEMG. In our system, we suppose that muscle power is proportional to the amplitude of SEMG. The power is estimated and the grip power of a robot hand is able to be controlled using estimated muscle power in our system. In addition, to perform a more precise control can be considered to build a closed loop feedback system as an object to a subject to pressure from the edge of hand. Our objectives of this study are the development of a method that makes perfect detection of the hand grip force possible using SEMG patterns, and applying this method to the man-machine interface.

Keywords: SEMG, multi electrode, robot hand, power control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
10388 Fuzzy Logic Control of Static Var Compensator for Power System Damping

Authors: N.Karpagam, D.Devaraj

Abstract:

Static Var Compensator (SVC) is a shunt type FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper, a fuzzy logic based supplementary controller for Static Var Compensator (SVC) is developed which is used for damping the rotor angle oscillations and to improve the transient stability of the power system. Generator speed and the electrical power are chosen as input signals for the Fuzzy Logic Controller (FLC). The effectiveness and feasibility of the proposed control is demonstrated with Single Machine Infinite Bus (SMIB) system and multimachine system (WSCC System) which show improvement over the use of a fixed parameter controller.

Keywords: FLC, SVC, Transient stability, SMIB, PIDcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3456
10387 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Authors: Gayadhar Panda, P. K. Rautraya

Abstract:

Damping of inter-area electromechanical oscillations is one of the major challenges to the electric power system operators. This paper presents Gravitational Search Algorithm (GSA) for tuning Static Synchronous Series Compensator (SSSC) based damping controller to improve power system oscillation stability. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The effectiveness of the scheme in damping power system oscillations during system faults at different loading conditions is demonstrated through time-domain simulation.

Keywords: FACTS, Damping controller design, Gravitational search algorithm (GSA), Power system oscillations, Single-machine infinite Bus power system, SSSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
10386 Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability

Authors: K. Saravanan

Abstract:

An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.

Keywords: UPFC, SMES, power system stability, flexible ac transmission systems, fuel cells, chopper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
10385 Power System with PSS and FACTS Controller: Modelling, Simulation and Simultaneous Tuning Employing Genetic Algorithm

Authors: Sidhartha Panda, Narayana Prasad Padhy

Abstract:

This paper presents a systematic procedure for modelling and simulation of a power system installed with a power system stabilizer (PSS) and a flexible ac transmission system (FACTS)-based controller. For the design purpose, the model of example power system which is a single-machine infinite-bus power system installed with the proposed controllers is developed in MATLAB/SIMULINK. In the developed model synchronous generator is represented by model 1.1. which includes both the generator main field winding and the damper winding in q-axis so as to evaluate the impact of PSS and FACTS-based controller on power system stability. The model can be can be used for teaching the power system stability phenomena, and also for research works especially to develop generator controllers using advanced technologies. Further, to avoid adverse interactions, PSS and FACTS-based controller are simultaneously designed employing genetic algorithm (GA). The non-linear simulation results are presented for the example power system under various disturbance conditions to validate the effectiveness of the proposed modelling and simultaneous design approach.

Keywords: Genetic algorithm, modelling and simulation, MATLAB/SIMULINK, power system stabilizer, thyristor controlledseries compensator, simultaneous design, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163
10384 Unified Power Flow Controller Placement to Improve Damping of Power Oscillations

Authors: M. Salehi, A. A. Motie Birjandi, F. Namdari

Abstract:

Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is proposed to select proper location of UPFC and the best input control signal in order to enhance damping of power oscillations. The effectiveness of the proposed technique is demonstrated in IEEE 9 bus power system.

Keywords: Unified power flow controller (UPFC), controllability, small signal analysis, eigenvalues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
10383 Hybrid Power – Application for Tourism in Isolated Areas

Authors: Aurelian Octavian Ciucâ, Ioan Bitir-Istrate, Mircea Scripcariu

Abstract:

The rapidly increasing costs of power line extensions and fossil fuel, combined with the desire to reduce carbon dioxide emissions pushed the development of hybrid power system suited for remote locations, the purpose in mind being that of autonomous local power systems. The paper presents the suggested solution for a “high penetration" hybrid power system, it being determined by the location of the settlement and its “zero policy" on carbon dioxide emissions. The paper focuses on the technical solution and the power flow management algorithm of the system, taking into consideration local conditions of development.

Keywords: Renewable energy, hybrid power system, wind turbine, photovoltaic panels, bio-diesel cogeneration, bio-fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
10382 Providing Additional Advantages for STATCOM in Power Systems by Integration of Energy Storage Device

Authors: Reza Sedaghati

Abstract:

The use of Flexible AC Transmission System (FACTS) devices in a power system can potentially overcome limitations of the present mechanically controlled transmission system. Also, the advance of technology makes possible to include new energy storage devices in the electrical power system. The integration of Superconducting Magnetic Energy Storage (SMES) into Static Synchronous Compensator (STATCOM) can lead to increase their flexibility in improvement of power system dynamic behaviour by exchanging both active and reactive powers with power grids. This paper describes structure and behaviour of SMES, specifications and performance principles of the STATCOM/SMES compensator. Moreover, the benefits and effectiveness of integrated SMES with STATCOM in power systems is presented. Also, the performance of the STATCOM/SMES compensator is evaluated using an IEEE 3-bus system through the dynamic simulation by PSCAD/EMTDC software.

Keywords: STATCOM/SMES compensator, chopper, converter, energy storage system, power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3342