Search results for: milling operation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1384

Search results for: milling operation.

1354 Efficient CNC Milling by Adjusting Material Removal Rate

Authors: Majid Tolouei-Rad

Abstract:

This paper describes a combined mathematicalgraphical approach for optimum tool path planning in order to improve machining efficiency. A methodology has been used that stabilizes machining operations by adjusting material removal rate in pocket milling operations while keeping cutting forces within limits. This increases the life of cutting tool and reduces the risk of tool breakage, machining vibration, and chatter. Case studies reveal the fact that application of this approach could result in a slight increase of machining time, however, a considerable reduction of tooling cost, machining vibration, noise and chatter can be achieved in addition to producing a better surface finish.

Keywords: CNC machines, milling, optimization, removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3475
1353 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method

Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil

Abstract:

The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.

Keywords: Additive manufacturing, selective laser melting, surface roughness, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971
1352 Pin type Clamping Attachment for Remote Setup of Machining Process

Authors: Afzeri, R. Muhida, Darmawan, A. N. Berahim

Abstract:

Sharing the manufacturing facility through remote operation and monitoring of a machining process is challenge for effective use the production facility. Several automation tools in term of hardware and software are necessary for successfully remote operation of a machine. This paper presents a prototype of workpiece holding attachment for remote operation of milling process by self configuration the workpiece setup. The prototype is designed with mechanism to reorient the work surface into machining spindle direction with high positioning accuracy. Variety of parts geometry is hold by attachment to perform single setup machining. Pin type with array pattern additionally clamps the workpiece surface from two opposite directions for increasing the machining rigidity. Optimum pins configuration for conforming the workpiece geometry with minimum deformation is determined through hybrid algorithms, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Prototype with intelligent optimization technique enables to hold several variety of workpiece geometry which is suitable for machining low of repetitive production in remote operation.

Keywords: Optimization, Remote machining, GeneticAlgorithms, Machining Fixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
1351 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations

Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li

Abstract:

The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.

Keywords: CNC milling, CNC turning, surface roughness, Taguchi analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
1350 Improvement on a CNC Gantry Machine Structure Design for Higher Machining Speed Capability

Authors: Ahmed A. D. Sarhan, S. R. Besharaty, Javad Akbaria, M. Hamdi

Abstract:

The capability of CNC gantry milling machines in manufacturing long components has caused the expanded use of such machines. On the other hand, the machines’ gantry rigidity can reduce under severe loads or vibration during operation. Indeed, the quality of machining is dependent on the machine’s dynamic behavior throughout the operating process. For this reason, these types of machines have always been used widely and are not efficient. Therefore, they can usually be employed for rough machining and may not produce adequate surface finishing. In this paper, a CNC gantry milling machine with the potential to produce good surface finish has been designed and analyzed. The lowest natural frequency of this machine is 202 Hz corresponding to 12000 rpm at all motion amplitudes with a full range of suitable frequency responses. Meanwhile, the maximum deformation under dead loads for the gantry machine is 0.565*m, indicating that this machine tool is capable of producing higher product quality.

Keywords: Finite element, frequency response, gantry design, gantry machine, static and dynamic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6034
1349 Designs of Temperature Measuring Device for a Re-Configured Milling Machine

Authors: Esther T. Akinlabi, Stephen A. Akinlabi

Abstract:

The design of temperature measuring approach for a re-configured milling machine to produce friction stir welds is reported in this paper. The product design specifications for the redesigning of a milling machine were first outlined and the ranking criteria were determined. Three different concepts were generated for the temperature measurement on the reconfigured system and the preferred or the best concept was selected based on the set design ranking criteria. Further simulation and performance analysis was then conducted on the concept. The Infrared Thermography (IRT) concept was selected for the temperature measurement among other concepts generated because it is an ideal and most effective system of measurement in this regard.

Keywords: Clamping system, Friction Stir Welding, Reconfiguration, Support systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
1348 CAD-Based Modelling of Surface Roughness in Face Milling

Authors: C. Felho, J. Kundrak

Abstract:

The quality of machined surfaces is an important characteristic of cutting processes and surface roughness has strong effects on the performance of sliding, moving components. The ability to forecast these values for a given process has been of great interests among researchers for a long time. Different modeling procedures and algorithms have been worked-out, and each has its own advantages and drawbacks. A new method will be introduced in this paper which will make it possible to calculate both the profile (2D) and surface (3D) parameters of theoretical roughness in the face milling of plain surfaces. This new method is based on an expediently developed CAD model, and uses a professional program for the roughness evaluation. Cutting experiments were performed on 42CrMo4 specimens in order to validate the accuracy of the model. The results have revealed that the method is able to predict surface roughness with good accuracy.

Keywords: CAD-based modeling, face milling, surface roughness, theoretical roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3068
1347 Advance in Monitoring and Process Control of Surface Roughness

Authors: Somkiat Tangjitsitcharoen, Siripong Damrongthaveesak

Abstract:

This paper presents an advance in monitoring and process control of surface roughness in CNC machine for the turning and milling processes. An integration of the in-process monitoring and process control of the surface roughness is proposed and developed during the machining process by using the cutting force ratio. The previously developed surface roughness models for turning and milling processes of the author are adopted to predict the inprocess surface roughness, which consist of the cutting speed, the feed rate, the tool nose radius, the depth of cut, the rake angle, and the cutting force ratio. The cutting force ratios obtained from the turning and the milling are utilized to estimate the in-process surface roughness. The dynamometers are installed on the tool turret of CNC turning machine and the table of 5-axis machining center to monitor the cutting forces. The in-process control of the surface roughness has been developed and proposed to control the predicted surface roughness. It has been proved by the cutting tests that the proposed integration system of the in-process monitoring and the process control can be used to check the surface roughness during the cutting by utilizing the cutting force ratio.

Keywords: Turning, milling, monitoring, surface roughness, cutting force ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
1346 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification

Authors: Jui P. Hung, Yuan L. Lai, Hui T. You

Abstract:

Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.

Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
1345 Machining Stability of a Milling Machine with Different Preloaded Spindle

Authors: Jui-Pin Hung, Qiao-Wen Chang, Kung-Da Wu, Yong-Run Chen

Abstract:

This study was aimed to investigate the machining stability of a spindle tool with different preloaded amount. To this end, the vibration tests were conducted on the spindle unit with different preload to assess the dynamic characteristics and machining stability of the milling machine. Current results demonstrate that the tool tip frequency response characteristics and the machining stabilities in X and Y direction are affected to change due to the different preload of spindle bearings. As found from the results, a high preloaded spindle tool shows higher limited cutting depth at mid position, while a spindle with low preload shows a higher limited depth. This indicates that the machining stability of a milling machine is affected to vary by the spindle unit when it was assembled with different bearing preload.

Keywords: Dynamic compliance, Bearing preload, Machining stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
1344 Milling Chatter Prevention by Adaptive Spindle Speed Tuning

Authors: Nan-Chyuan Tsai, Din-Chang Chen, Rong-Mao Lee, Bai-Lu Wang

Abstract:

This paper presents how the real-time chatter prevention can be realized by feedback of acoustic cutting signal, and the efficacy of the proposed adaptive spindle speed tuning algorithm is verified by intensive experimental simulations. A pair of microphones, perpendicular to each other, is used to acquire the acoustic cutting signal resulting from milling chatter. A real-time feedback control loop is constructed for spindle speed compensation so that the milling process can be ensured to be within the stability zone of stability lobe diagram. Acoustic Chatter Signal Index (ACSI) and Spindle Speed Compensation Strategy (SSCS) are proposed to quantify the acoustic signal and actively tune the spindle speed respectively. By converting the acoustic feedback signal into ACSI, an appropriate Spindle Speed Compensation Rate (SSCR) can be determined by SSCS based on real-time chatter level or ACSI. Accordingly, the compensation command, referred to as Added-On Voltage (AOV), is applied to increase/decrease the spindle motor speed. By inspection on the precision and quality of the workpiece surface after milling, the efficacy of the real-time chatter prevention strategy via acoustic signal feedback is further assured.

Keywords: Chatter compensation, Stability lobes, Non-invasivemeasurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
1343 Minimization of Non-Productive Time during 2.5D Milling

Authors: Satish Kumar, Arun Kumar Gupta, Pankaj Chandna

Abstract:

In the modern manufacturing systems, the use of thermal cutting techniques using oxyfuel, plasma and laser have become indispensable for the shape forming of high quality complex components; however, the conventional chip removal production techniques still have its widespread space in the manufacturing industry. Both these types of machining operations require the positioning of end effector tool at the edge where the cutting process commences. This repositioning of the cutting tool in every machining operation is repeated several times and is termed as non-productive time or airtime motion. Minimization of this non-productive machining time plays an important role in mass production with high speed machining. As, the tool moves from one region to the other by rapid movement and visits a meticulous region once in the whole operation, hence the non-productive time can be minimized by synchronizing the tool movements. In this work, this problem is being formulated as a general travelling salesman problem (TSP) and a genetic algorithm approach has been applied to solve the same. For improving the efficiency of the algorithm, the GA has been hybridized with a noble special heuristic and simulating annealing (SA). In the present work a novel heuristic in the combination of GA has been developed for synchronization of toolpath movements during repositioning of the tool. A comparative analysis of new Meta heuristic techniques with simple genetic algorithm has been performed. The proposed metaheuristic approach shows better performance than simple genetic algorithm for minimization of nonproductive toolpath length. Also, the results obtained with the help of hybrid simulated annealing genetic algorithm (HSAGA) are also found better than the results using simple genetic algorithm only.

Keywords: Non-productive time, Airtime, 2.5 D milling, Laser cutting, Metaheuristic, Genetic Algorithm, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
1342 BDD Package Based on Boolean NOR Operation

Authors: M. Raseen, A.Assi, P.W. C. Prasad, A. Harb

Abstract:

Binary Decision Diagrams (BDDs) are useful data structures for symbolic Boolean manipulations. BDDs are used in many tasks in VLSI/CAD, such as equivalence checking, property checking, logic synthesis, and false paths. In this paper we describe a new approach for the realization of a BDD package. To perform manipulations of Boolean functions, the proposed approach does not depend on the recursive synthesis operation of the IF-Then-Else (ITE). Instead of using the ITE operation, the basic synthesis algorithm is done using Boolean NOR operation.

Keywords: Binary Decision Diagram (BDD), ITE Operation, Boolean Function, NOR operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
1341 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel

Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan

Abstract:

This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.

Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
1340 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.

Keywords: CNC machining, Six Sigma, Surface roughness, Taguchi methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
1339 Development of Predictive Model for Surface Roughness in End Milling of Al-SiCp Metal Matrix Composites using Fuzzy Logic

Authors: M. Chandrasekaran, D. Devarasiddappa

Abstract:

Metal matrix composites have been increasingly used as materials for components in automotive and aerospace industries because of their improved properties compared with non-reinforced alloys. During machining the selection of appropriate machining parameters to produce job for desired surface roughness is of great concern considering the economy of manufacturing process. In this study, a surface roughness prediction model using fuzzy logic is developed for end milling of Al-SiCp metal matrix composite component using carbide end mill cutter. The surface roughness is modeled as a function of spindle speed (N), feed rate (f), depth of cut (d) and the SiCp percentage (S). The predicted values surface roughness is compared with experimental result. The model predicts average percentage error as 4.56% and mean square error as 0.0729. It is observed that surface roughness is most influenced by feed rate, spindle speed and SiC percentage. Depth of cut has least influence.

Keywords: End milling, fuzzy logic, metal matrix composites, surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
1338 Chatter Stability Characterization of Full-Immersion End-Milling Using a Generalized Modified Map of the Full-Discretization Method, Part 1: Validation of Results and Study of Stability Lobes by Numerical Simulation

Authors: Chigbogu G. Ozoegwu, Sam N. Omenyi

Abstract:

The objective in this work is to generate and discuss the stability results of fully-immersed end-milling process with parameters; tool mass m=0.0431kg,tool natural frequency ωn = 5700 rads^-1, damping factor ξ=0.002 and workpiece cutting coefficient C=3.5x10^7 Nm^-7/4. Different no of teeth is considered for the end-milling. Both 1-DOF and 2-DOF chatter models of the system are generated on the basis of non-linear force law. Chatter stability analysis is carried out using a modified form (generalized for both 1-DOF and 2-DOF models) of recently developed method called Full-discretization. The full-immersion three tooth end-milling together with higher toothed end-milling processes has secondary Hopf bifurcation lobes (SHBL’s) that exhibit one turning (minimum) point each. Each of such SHBL is demarcated by its minimum point into two portions; (i) the Lower Spindle Speed Portion (LSSP) in which bifurcations occur in the right half portion of the unit circle centred at the origin of the complex plane and (ii) the Higher Spindle Speed Portion (HSSP) in which bifurcations occur in the left half portion of the unit circle. Comments are made regarding why bifurcation lobes should generally get bigger and more visible with increase in spindle speed and why flip bifurcation lobes (FBL’s) could be invisible in the low-speed stability chart but visible in the high-speed stability chart of the fully-immersed three-tooth miller.

Keywords: Chatter, flip bifurcation, modified full-discretization map stability lobe, secondary Hopf bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
1337 Effect of the Machine Frame Structures on the Frequency Responses of Spindle Tool

Authors: Yuan L. Lai, Yong R. Chen, Jui P. Hung, Tzuo L. Luo, Hsi H. Hsiao

Abstract:

Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process. Therefore the dynamic vibration behavior of spindle tool system greatly determines the performance of machine tool. The purpose of this study is to investigate the influences of the machine frame structure on the dynamic frequency of spindle tool unit through finite element modeling approach. To this end, a realistic finite element model of the vertical milling system was created by incorporated the spindle-bearing model into the spindle head stock of the machine frame. Using this model, the dynamic characteristics of the milling machines with different structural designs of spindle head stock and identical spindle tool unit were demonstrated. The results of the finite element modeling reveal that the spindle tool unit behaves more compliant when the excited frequency approaches the natural mode of the spindle tool; while the spindle tool show a higher dynamic stiffness at lower frequency that may be initiated by the structural mode of milling head. Under this condition, it is concluded that the structural configuration of spindle head stock associated with the vertical column of milling machine plays an important role in determining the machining dynamics of the spindle unit.

Keywords: Machine tools, Compliance, Frequency response function, Machine frame structure, Spindle unit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2818
1336 Mathematical Modeling to Predict Surface Roughness in CNC Milling

Authors: Ab. Rashid M.F.F., Gan S.Y., Muhammad N.Y.

Abstract:

Surface roughness (Ra) is one of the most important requirements in machining process. In order to obtain better surface roughness, the proper setting of cutting parameters is crucial before the process take place. This research presents the development of mathematical model for surface roughness prediction before milling process in order to evaluate the fitness of machining parameters; spindle speed, feed rate and depth of cut. 84 samples were run in this study by using FANUC CNC Milling α-Τ14ιE. Those samples were randomly divided into two data sets- the training sets (m=60) and testing sets(m=24). ANOVA analysis showed that at least one of the population regression coefficients was not zero. Multiple Regression Method was used to determine the correlation between a criterion variable and a combination of predictor variables. It was established that the surface roughness is most influenced by the feed rate. By using Multiple Regression Method equation, the average percentage deviation of the testing set was 9.8% and 9.7% for training data set. This showed that the statistical model could predict the surface roughness with about 90.2% accuracy of the testing data set and 90.3% accuracy of the training data set.

Keywords: Surface roughness, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1335 Effect of Cooling Coherent Nozzle Orientation on the Machinability of Ti-6Al-4V in Step Shoulder Milling

Authors: Salah Gariani, Islam Shyha, Osama Elgadi, Khaled Jegandi

Abstract:

In this work, a cooling coherent round nozzle was developed and the impact of nozzle placement (i.e. nozzle angle and stand-off/impinging distance) on the machinability of Ti-6Al-4V was evaluated. Key process measures were cutting force, workpiece temperature, tool wear, burr formation and average surface roughness (Ra). Experimental results showed that nozzle position at a 15° angle in the feed direction and 45°/60° against feed direction assisted in minimising workpiece temperature. A stand-off distance of 55 and 75 mm is also necessary to control burr formation, workpiece temperature and Ra, but coherent nozzle orientation has no statistically significant impact on the mean values of cutting force and tool wear. It can be concluded that stand-off distance is more substantially significant than nozzle angles when step shoulder milling Ti-6Al- 4V using vegetable oil-based cutting fluid.

Keywords: Coherent round nozzle, step shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 437
1334 The Effect of High-speed Milling on Surface Roughness of Hardened Tool Steel

Authors: Manop Vorasri, Komson Jirapattarasilp, Sittichai Kaewkuekool

Abstract:

The objective of this research was to study factors, which were affected on surface roughness in high speed milling of hardened tool steel. Material used in the experiment was tool steel JIS SKD 61 that hardened on 60 ±2 HRC. Full factorial experimental design was conducted on 3 factors and 3 levels (3 3 designs) with 2 replications. Factors were consisted of cutting speed, feed rate, and depth of cut. The results showed that influenced factor affected to surface roughness was cutting speed, feed rate and depth of cut which showed statistical significant. Higher cutting speed would cause on better surface quality. On the other hand, higher feed rate would cause on poorer surface quality. Interaction of factor was found that cutting speed and depth of cut were significantly to surface quality. The interaction of high cutting speed associated with low depth of cut affected to better surface quality than low cutting speed and high depth of cut.

Keywords: High-speed milling, Tool steel, SKD 61 Steel, Surface roughness, Cutting speed, Feed rate, Depth of cut

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
1333 Feedrate Optimization for Ball-end milling of Sculptured Surfaces using Fuzzy Logic Controller

Authors: Njiri J. G., Ikua B. W., Nyakoe G. N.

Abstract:

Optimization of cutting parameters important in precision machining in regards to efficiency and surface integrity of the machined part. Usually productivity and precision in machining is limited by the forces emanating from the cutting process. Due to the inherent varying nature of the workpiece in terms of geometry and material composition, the peak cutting forces vary from point to point during machining process. In order to increase productivity without compromising on machining accuracy, it is important to control these cutting forces. In this paper a fuzzy logic control algorithm is developed that can be applied in the control of peak cutting forces in milling of spherical surfaces using ball end mills. The controller can adaptively vary the feedrate to maintain allowable cutting force on the tool. This control algorithm is implemented in a computer numerical control (CNC) machine. It has been demonstrated that the controller can provide stable machining and improve the performance of the CNC milling process by varying feedrate.

Keywords: Ball-end mill, feedrate, fuzzy logic controller, machining optimization, spherical surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
1332 Prediction of Optimum Cutting Parameters to obtain Desired Surface in Finish Pass end Milling of Aluminium Alloy with Carbide Tool using Artificial Neural Network

Authors: Anjan Kumar Kakati, M. Chandrasekaran, Amitava Mandal, Amit Kumar Singh

Abstract:

End milling process is one of the common metal cutting operations used for machining parts in manufacturing industry. It is usually performed at the final stage in manufacturing a product and surface roughness of the produced job plays an important role. In general, the surface roughness affects wear resistance, ductility, tensile, fatigue strength, etc., for machined parts and cannot be neglected in design. In the present work an experimental investigation of end milling of aluminium alloy with carbide tool is carried out and the effect of different cutting parameters on the response are studied with three-dimensional surface plots. An artificial neural network (ANN) is used to establish the relationship between the surface roughness and the input cutting parameters (i.e., spindle speed, feed, and depth of cut). The Matlab ANN toolbox works on feed forward back propagation algorithm is used for modeling purpose. 3-12-1 network structure having minimum average prediction error found as best network architecture for predicting surface roughness value. The network predicts surface roughness for unseen data and found that the result/prediction is better. For desired surface finish of the component to be produced there are many different combination of cutting parameters are available. The optimum cutting parameter for obtaining desired surface finish, to maximize tool life is predicted. The methodology is demonstrated, number of problems are solved and algorithm is coded in Matlab®.

Keywords: End milling, Surface roughness, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
1331 Role of Process Parameters on Pocket Milling with Abrasive Water Jet Machining Technique

Authors: T. V. K. Gupta, J. Ramkumar, Puneet Tandon, N. S. Vyas

Abstract:

Abrasive Water Jet Machining is an unconventional machining process well known for machining hard to cut materials. The primary research focus on the process was for through cutting and a very limited literature is available on pocket milling using AWJM. The present work is an attempt to use this process for milling applications considering a set of various process parameters. Four different input parameters, which were considered by researchers for part separation, are selected for the above application, i.e., abrasive size, flow rate, standoff distance and traverse speed. Pockets of definite size are machined to investigate surface roughness, material removal rate and pocket depth. Based on the data available through experiments on SS304 material, it is observed that higher traverse speeds gives a better finish because of reduction in the particle energy density and lower depth is also observed. Increase in the standoff distance and abrasive flow rate reduces the rate of material removal as the jet loses its focus and occurrence of collisions within the particles. ANOVA for individual output parameter has been studied to know the significant process parameters.

Keywords: Abrasive flow rate, surface finish, abrasive size, standoff distance, traverse speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4232
1330 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1329 Using Finite Element Analysis on Dynamic Characteristics in a Micro Stepping Mill

Authors: Bo Wun Huang, Pu Ping Yu, Jao-Hwa Kuang

Abstract:

For smaller mechatronic device, especially for micro Electronic system, a micro machining is a must. However, most investigations on vibration of a mill have been limited to the traditional type mill. In this article, vibration and dynamic characteristics of a micro mill were investigated in this study. The trend towards higher precision manufacturing technology requires producing miniaturized components. To improve micro-milled product quality, obtain a higher production rate and avoid milling breakage, the dynamic characteristics of micro milling must be studied. A stepped pre-twisted mill is used to simulate the micro mill. The finite element analysis is employed in this work. The flute length and diameter effects of the micro mill are considered. It is clear that the effects of micro mill shape parameters on vibration in a micro mill are significant.

Keywords: micro system, micro mill, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
1328 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling

Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa

Abstract:

The wear of cutting tool degrades the quality of the product in the manufacturing processes. The on line monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear on line. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc…. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.

Keywords: Flank wear, cutting forces, high speed milling, signal processing, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577
1327 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling

Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar

Abstract:

Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.

Keywords: Toolpath, part program, optimization, pocket.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
1326 An Improved Genetic Algorithm to Solve the Traveling Salesman Problem

Authors: Omar M. Sallabi, Younis El-Haddad

Abstract:

The Genetic Algorithm (GA) is one of the most important methods used to solve many combinatorial optimization problems. Therefore, many researchers have tried to improve the GA by using different methods and operations in order to find the optimal solution within reasonable time. This paper proposes an improved GA (IGA), where the new crossover operation, population reformulates operation, multi mutation operation, partial local optimal mutation operation, and rearrangement operation are used to solve the Traveling Salesman Problem. The proposed IGA was then compared with three GAs, which use different crossover operations and mutations. The results of this comparison show that the IGA can achieve better results for the solutions in a faster time.

Keywords: AI, Genetic algorithms, TSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
1325 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Authors: Pankaj Chandna, Dinesh Kumar

Abstract:

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.

Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768