Search results for: meshes convergence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 438

Search results for: meshes convergence

408 The Convergence Results between Backward USSOR and Jacobi Iterative Matrices

Authors: Zuan-De Wang, Hou-biao Li, Zhong-xi Gao

Abstract:

In this paper, the backward Ussor iterative matrix is proposed. The relationship of convergence between the backward Ussor iterative matrix and Jacobi iterative matrix is obtained, which makes the results in the corresponding references be improved and refined.Moreover,numerical examples also illustrate the effectiveness of these conclusions.

Keywords: Backward USSOR iterative matrix, Jacobi iterative matrix, convergence, spectral radius

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
407 Convergence Analysis of the Generalized Alternating Two-Stage Method

Authors: Guangbin Wang, Liangliang Li, Fuping Tan

Abstract:

In this paper, we give the generalized alternating twostage method in which the inner iterations are accomplished by a generalized alternating method. And we present convergence results of the method for solving nonsingular linear systems when the coefficient matrix of the linear system is a monotone matrix or an H-matrix.

Keywords: Generalized alternating two-stage method, linear system, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
406 CFD Study for Normal and Rifled Tube with a Convergence Check

Authors: Sharfi Dirar, Shihab Elhaj, Ahmed El Fatih

Abstract:

Computational fluid dynamics were used to simulate and study the heated water boiler tube for both normal and rifled tube with a refinement of the mesh to check the convergence. The operation condition was taken from GARRI power station and used in a boundary condition accordingly. The result indicates the rifled tube has higher heat transfer efficiency than the normal tube.

Keywords: Boiler tube, Convergence Check, Normal Tube, Rifled Tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
405 Regional Convergence in per Capita Personal Income in the US and Canada

Authors: Ilona Shiller

Abstract:

This study examines regional convergence in per capita personal income in the US and Canada. We find that the disparity in real per capita income levels across US states (Canadian provinces) has declined, but income levels are not identical. Income levels become more aligned once costs of living are accounted for in relative per capita income series. US states (Canadian provinces) converge at an annual rate of between 1.3% and 2.04% (between 2.15% and 2.37%). A pattern of σ and β-convergence in per capita personal income across regions evident over the entire sample period, is reversed over 1979-1989 (1976-1990) period. The reversal may be due to sectoral or region-specific shocks that have highly persistent effects. The latter explanation might be true for half of the US and most of Canada.

Keywords: regional convergence, regional disparities, per capita income.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
404 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
403 A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems

Authors: P I Jagad, B P Puranik, A W Date

Abstract:

Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved.

Keywords: Finite volume method, flow induced stresses, fluidstructureinteraction, unstructured meshes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
402 Rate of Convergence for Generalized Baskakov-Durrmeyer Operators

Authors: Durvesh Kumar Verma, P. N. Agrawal

Abstract:

In the present paper, we consider the generalized form of Baskakov Durrmeyer operators to study the rate of convergence, in simultaneous approximation for functions having derivatives of bounded variation.

Keywords: Bounded variation, Baskakov-Durrmeyer operators, simultaneous approximation, rate of convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
401 A New Derivative-Free Quasi-Secant Algorithm For Solving Non-Linear Equations

Authors: F. Soleymani, M. Sharifi

Abstract:

Most of the nonlinear equation solvers do not converge always or they use the derivatives of the function to approximate the root of such equations. Here, we give a derivative-free algorithm that guarantees the convergence. The proposed two-step method, which is to some extent like the secant method, is accompanied with some numerical examples. The illustrative instances manifest that the rate of convergence in proposed algorithm is more than the quadratically iterative schemes.

Keywords: Non-linear equation, iterative methods, derivative-free, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
400 Parallel Multisplitting Methods for Singular Linear Systems

Authors: Guangbin Wang, Fuping Tan

Abstract:

In this paper, we discuss convergence of the extrapolated iterative methods for linear systems with the coefficient matrices are singular H-matrices. And we present the sufficient and necessary conditions for convergence of the extrapolated iterative methods. Moreover, we apply the results to the GMAOR methods. Finally, we give one numerical example.

Keywords: Singular H-matrix, linear systems, extrapolated iterative method, GMAOR method, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
399 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3561
398 Convergence and Comparison Theorems of the Modified Gauss-Seidel Method

Authors: Zhouji Chen

Abstract:

In this paper, the modified Gauss-Seidel method with the new preconditioner for solving the linear system Ax = b, where A is a nonsingular M-matrix with unit diagonal, is considered. The convergence property and the comparison theorems of the proposed method are established. Two examples are given to show the efficiency and effectiveness of the modified Gauss-Seidel method with the presented new preconditioner.

Keywords: Preconditioned linear system, M-matrix, Convergence, Comparison theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
397 Organizational Strategy for Technology Convergence

Authors: Seongykyoon Jeong, Sungki Lee, Jaeyun Kim, Seunghun Oh, Kiho Kwak

Abstract:

The purpose of this article is to identify the practical strategies of R&D (research and development) entities for developing converging technology in organizational context. Based on the multi-assignation technological domains of patents derived from entire government-supported R&D projects for 13 years, we find that technology convergence is likely to occur when a university solely develops technology or when university develops technology as one of the collaborators. These results reflect the important role of universities in developing converging technology

Keywords: Interdisciplinary, Research and development strategy, Technology convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
396 The Convergence Theorems for Mixing Random Variable Sequences

Authors: Yan-zhao Yang

Abstract:

In this paper, some limit properties for mixing random variables sequences were studied and some results on weak law of large number for mixing random variables sequences were presented. Some complete convergence theorems were also obtained. The results extended and improved the corresponding theorems in i.i.d random variables sequences.

Keywords: Complete convergence, mixing random variables, weak law of large numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
395 Weak Convergence of Mann Iteration for a Hybrid Pair of Mappings in a Banach Space

Authors: Alemayehu Geremew Negash

Abstract:

We prove the weak convergence of Mann iteration for a hybrid pair of maps to a common fixed point of a selfmap f and a multivalued f nonexpansive mapping T in Banach space E.  

Keywords: Common fixed point, Mann iteration, Multivalued mapping, weak convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
394 Relaxing Convergence Constraints in Local Priority Hysteresis Switching Logic

Authors: Mubarak Alhajri

Abstract:

This paper addresses certain inherent limitations of local priority hysteresis switching logic. Our main result establishes that under persistent excitation assumption, it is possible to relax constraints requiring strict positivity of local priority and hysteresis switching constants. Relaxing these constraints allows the adaptive system to reach optimality which implies the performance improvement. The unconstrained local priority hysteresis switching logic is examined and conditions for global convergence are derived.

Keywords: Adaptive control, convergence, hysteresis constant, hysteresis switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
393 DHT-LMS Algorithm for Sensorineural Loss Patients

Authors: Sunitha S. L., V. Udayashankara

Abstract:

Hearing impairment is the number one chronic disability affecting many people in the world. Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Hartley Transform Power Normalized Least Mean Square algorithm (DHT-LMS) to improve the SNR and to reduce the convergence rate of the Least Means Square (LMS) for sensorineural loss patients. The DHT transforms n real numbers to n real numbers, and has the convenient property of being its own inverse. It can be effectively used for noise cancellation with less convergence time. The simulated result shows the superior characteristics by improving the SNR at least 9 dB for input SNR with zero dB and faster convergence rate (eigenvalue ratio 12) compare to time domain method and DFT-LMS.

Keywords: Hearing Impairment, DHT-LMS, Convergence rate, SNR improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
392 Application of Adaptive Genetic Algorithm in Function Optimization

Authors: Panpan Xu, Shulin Sui

Abstract:

The crossover probability and mutation probability are the two important factors in genetic algorithm. The adaptive genetic algorithm can improve the convergence performance of genetic algorithm, in which the crossover probability and mutation probability are adaptively designed with the changes of fitness value. We apply adaptive genetic algorithm into a function optimization problem. The numerical experiment represents that adaptive genetic algorithm improves the convergence speed and avoids local convergence.

Keywords: Genetic algorithm, Adaptive genetic algorithm, Function optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
391 Convergence of a One-step Iteration Scheme for Quasi-asymptotically Nonexpansive Mappings

Authors: Safeer Hussain Khan

Abstract:

In this paper, we use a one-step iteration scheme to approximate common fixed points of two quasi-asymptotically nonexpansive mappings. We prove weak and strong convergence theorems in a uniformly convex Banach space. Our results generalize the corresponding results of Yao and Chen [15] to a wider class of mappings while extend those of Khan, Abbas and Khan [4] to an improved one-step iteration scheme without any condition and improve upon many others in the literature.

Keywords: One-step iteration scheme, asymptotically quasi non expansive mapping, common fixed point, condition (a'), weak and strong convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
390 Advances on the Understanding of Sequence Convergence Seen from the Perspective of Mathematical Working Spaces

Authors: Paula Verdugo-Hernández, Patricio Cumsille

Abstract:

We analyze a first-class on the convergence of real number sequences, named hereafter sequences, to foster exploration and discovery of concepts through graphical representations before engaging students in proving. The main goal was to differentiate between sequences and continuous functions-of-a-real-variable and better understand concepts at an initial stage. We applied the analytic frame of Mathematical Working Spaces, which we expect to contribute to extending to sequences since, as far as we know, it has only developed for other objects, and which is relevant to analyze how mathematical work is built systematically by connecting the epistemological and cognitive perspectives, and involving the semiotic, instrumental, and discursive dimensions.

Keywords: Convergence, graphical representations, Mathematical Working Spaces, paradigms of real analysis, real number sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 508
389 Convergence and Divergence in Telephone Conversations: A Case of Persian

Authors: Anna Mirzaiyan, Vahid Parvaresh, Mahmoud Hashemian, Masoud Saeedi

Abstract:

People usually have a telephone voice, which means they adjust their speech to fit particular situations and to blend in with other interlocutors. The question is: Do we speak differently to different people? This possibility has been suggested by social psychologists within Accommodation Theory [1]. Converging toward the speech of another person can be regarded as a polite speech strategy while choosing a language not used by the other interlocutor can be considered as the clearest example of speech divergence [2]. The present study sets out to investigate such processes in the course of everyday telephone conversations. Using Joos-s [3] model of formality in spoken English, the researchers try to explore convergence to or divergence from the addressee. The results propound the actuality that lexical choice, and subsequently, patterns of style vary intriguingly in concordance with the person being addressed.

Keywords: Convergence, divergence, lexical formality, speechaccommodation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3517
388 Increasing Convergence Rate of a Fractionally-Spaced Channel Equalizer

Authors: Waseem Khan

Abstract:

In this paper a technique for increasing the convergence rate of fractionally spaced channel equalizer is proposed. Instead of symbol-spaced updating of the equalizer filter, a mechanism has been devised to update the filter at a higher rate. This ensures convergence of the equalizer filter at a higher rate and therefore less time-consuming. The proposed technique has been simulated and tested for two-ray modeled channels with various delay spreads. These channels include minimum-phase and nonminimum- phase channels. Simulation results suggest that that proposed technique outperforms the conventional technique of symbol-spaced updating of equalizer filter.

Keywords: Channel equalization, Fractionally-spaced equalizer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
387 Methods for Manufacture of Corrugated Wire Mesh Laminates

Authors: Jeongho Choi, Krishna Shankar, Alan Fien, Andrew Neely

Abstract:

Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.

Keywords: cellular solids, corrugation, foam, open-cell, metal mesh, laminate, stainless steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
386 Adaptive Filtering in Subbands for Supervised Source Separation

Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia

Abstract:

This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.

Keywords: Adaptive filtering, multirate processing, normalized subband adaptive filter, source separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
385 Some Results on Parallel Alternating Methods

Authors: Guangbin Wang, Fuping Tan

Abstract:

In this paper, we investigate two parallel alternating methods for solving the system of linear equations Ax = b and give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix. Furthermore, we give one example to show our results.

Keywords: Nonsingular H-matrix, parallel alternating method, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
384 Mapping of C* Elements in Finite Element Method using Transformation Matrix

Authors: G. H. Majzoob, B. Sharifi Hamadani

Abstract:

Mapping between local and global coordinates is an important issue in finite element method, as all calculations are performed in local coordinates. The concern arises when subparametric are used, in which the shape functions of the field variable and the geometry of the element are not the same. This is particularly the case for C* elements in which the extra degrees of freedoms added to the nodes make the elements sub-parametric. In the present work, transformation matrix for C1* (an 8-noded hexahedron element with 12 degrees of freedom at each node) is obtained using equivalent C0 elements (with the same number of degrees of freedom). The convergence rate of 8-noded C1* element is nearly equal to its equivalent C0 element, while it consumes less CPU time with respect to the C0 element. The existence of derivative degrees of freedom at the nodes of C1* element along with excellent convergence makes it superior compared with it equivalent C0 element.

Keywords: Mapping, Finite element method, C* elements, Convergence, C0 elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149
383 Improving Convergence of Parameter Tuning Process of the Additive Fuzzy System by New Learning Strategy

Authors: Thi Nguyen, Lee Gordon-Brown, Jim Peterson, Peter Wheeler

Abstract:

An additive fuzzy system comprising m rules with n inputs and p outputs in each rule has at least t m(2n + 2 p + 1) parameters needing to be tuned. The system consists of a large number of if-then fuzzy rules and takes a long time to tune its parameters especially in the case of a large amount of training data samples. In this paper, a new learning strategy is investigated to cope with this obstacle. Parameters that tend toward constant values at the learning process are initially fixed and they are not tuned till the end of the learning time. Experiments based on applications of the additive fuzzy system in function approximation demonstrate that the proposed approach reduces the learning time and hence improves convergence speed considerably.

Keywords: Additive fuzzy system, improving convergence, parameter learning process, unsupervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
382 A New Preconditioned AOR Method for Z-matrices

Authors: Guangbin Wang, Ning Zhang, Fuping Tan

Abstract:

In this paper, we present a preconditioned AOR-type iterative method for solving the linear systems Ax = b, where A is a Z-matrix. And give some comparison theorems to show that the rate of convergence of the preconditioned AOR-type iterative method is faster than the rate of convergence of the AOR-type iterative method.

Keywords: Z-matrix, AOR-type iterative method, precondition, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
381 Some Results on Parallel Alternating Two-stage Methods

Authors: Guangbin Wang, Xue Li

Abstract:

In this paper, we present parallel alternating two-stage methods for solving linear system Ax=b, where A is a symmetric positive definite matrix. And we give some convergence results of these methods for nonsingular linear system.

Keywords: alternating two-stage, convergence, linear system, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1187
380 Localized Meshfree Methods for Solving 3D-Helmholtz Equation

Authors: Reza Mollapourasl, Majid Haghi

Abstract:

In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.

Keywords: Radial basis functions, Hermite finite difference, Helmholtz equation, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132
379 Fixed Points of Contractive-Like Operators by a Faster Iterative Process

Authors: Safeer Hussain Khan

Abstract:

In this paper, we prove a strong convergence result using a recently introduced iterative process with contractive-like operators. This improves andgeneralizes corresponding results in the literature in two ways: iterativeprocess is faster, operators are more general. At the end, we indicatethat the results can also be proved with the iterative process witherror terms.

Keywords: Contractive-like operator, iterative process, fixed point, strong convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712