Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31903
Advances on the Understanding of Sequence Convergence Seen from the Perspective of Mathematical Working Spaces

Authors: Paula Verdugo-Hernández, Patricio Cumsille

Abstract:

We analyze a first-class on the convergence of real number sequences, named hereafter sequences, to foster exploration and discovery of concepts through graphical representations before engaging students in proving. The main goal was to differentiate between sequences and continuous functions-of-a-real-variable and better understand concepts at an initial stage. We applied the analytic frame of Mathematical Working Spaces, which we expect to contribute to extending to sequences since, as far as we know, it has only developed for other objects, and which is relevant to analyze how mathematical work is built systematically by connecting the epistemological and cognitive perspectives, and involving the semiotic, instrumental, and discursive dimensions.

Keywords: Convergence, graphical representations, Mathematical Working Spaces, paradigms of real analysis, real number sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 336

References:


[1] Keene, K. A., Hall, W., & Duca, A. (2014). Sequence limits in calculus: using design research and building on intuition to support instruction. ZDM - Mathematics Education. https://doi.org/10.1007/s11858-014-0597-8
[2] Kuzniak, A., Tanguay, D., & Elia, I. (2016). Mathematical Working Spaces in schooling: an introduction. ZDM - Mathematics Education. https://doi.org/10.1007/s11858-016-0812-x
[3] Montoya-Delgadillo, E., & Vivier, L. (2016). Mathematical working space and paradigms as an analysis tool for the teaching and learning of analysis. ZDM - Mathematics Education, 48(6), 739–754. https://doi.org/10.1007/s11858-016-0777-9
[4] Oktaç, A., & Vivier, L. (2016). Conversion, Change, Transition… in Research About Analysis. In The Didactics of Mathematics: Approaches and Issues. https://doi.org/10.1007/978-3-319-26047-1_5
[5] Cornu, B. (2002). Limits. In David Tall (Ed.), Advanced Mathematical Thinking (pp. 153–166). Springer, Dordrecht. https://doi.org/https://doi.org/10.1007/0-306-47203-1_10
[6] Davis, R. B., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable misconception stages. Journal of Mathematical Behavior, 5(3), 281–303.
[7] Robert, A. (1982). Divers travaux de mathématiques et l’acquisition de la notion de convergence des suites numériques dans l’enseignement supérieur. Recherches En Didactique Des Mathématiques, Thèse d’Et(3), 307–341
[8] Tall, D., & Schwarzenberger, R. L. E. (1978). Conflicts in the learning of real numbers and limits. Mathematics Teaching, 82(1978), 44–49.
[9] Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169. https://doi.org/10.1007/BF00305619
[10] Artigue, M. (1998). Enseñanza y aprendizaje del análisis elemental: ¿qué se puede aprender de las investigaciones didácticas y los cambios curriculares? RELIME. Revista Latinoamericana de Investigación En Matemática Educativa, 98(1), 40–55.
[11] Fernández, E. (2004). The students’ take on the epsilon-delta definition of a limit. PRIMUS, 14(1), 43–54. https://doi.org/10.1080/10511970408984076
[12] Tall, D. (1992). The Transition to Advanced Mathematical Thinking: Functions, Limits, Infinity and Proof. In Handbook of Research on Mathematics Teaching and Learning (pp. 495–511).
[13] Mamona-Downs, J. (2001). Letting the intuitive bear on the formal; a didactical approach for the understanding of the limit of a sequence. Educational Studies in Mathematics. https://doi.org/10.1023/A:1016004822476
[14] Swinyard, C., & Larsen, S. (2012). Coming to Understand the Formal Definition of Limit: Insights Gained from Engaging Students in Reinvention. Journal for Research in Mathematics Education, 43(4), 465–493. https://doi.org/10.5951/jresematheduc.43.4.0465
[15] Oehrtman, M., Swinyard, C., & Martin, J. (2014). Problems and solutions in students’ reinvention of a definition for sequence convergence. The Journal of Mathematical Behavior, 33, 131–148. https://doi.org/10.1016/J.JMATHB.2013.11.006
[16] Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. In Making the Connection: Research and Teaching in Undergraduate Mathematics Education. https://doi.org/10.5948/UPO9780883859759.007
[17] Oehrtman, M. (2009). Collapsing dimensions, physical limitation, and other student metaphors for limit concepts. Journal for Research in Mathematics Education, 40(4), 396–426. Retrieved November 27, 2020, from http://www.jstor.org/stable/40539345
[18] Roh, K. H. (2008). Students’ images and their understanding of definitions of the limit of a sequence. Educational Studies in Mathematics, 69(3), 217–233. https://doi.org/10.1007/s10649-008-9128-2
[19] Roh, K. H. (2010). An empirical study of students’ understanding of a logical structure in the definition of limit via the ε-strip activity. Educational Studies in Mathematics, 73(3), 263–279. https://doi.org/10.1007/s10649-009-9210-4
[20] Gómez-Chacón, I. M., Kuzniak, A., & Vivier, L. (2016). The Teacher’s role from the perspective of Mathematical Working Spaces. Bolema - Mathematics Education Bulletin. https://doi.org/10.1590/1980-4415v30n54a01
[21] Artigue, M. (1988). Ingénierie didactique. Recherches En Didactique Des Mathématiques, 9(3), 281–308.
[22] Artigue, M. (2011). L’ingénierie didactique comme thème d’étude. In F. V. & F. W. C. Margolinas, M.Abboud-Blanchard, L. Bueno-Ravel, N. Douek, A. Fluckiger, P. Gibel (Ed.), En amont et en aval des ingénieries didactiques (pp. 15–25). Grenoble : La pensée sauvage.