Search results for: mass flux.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1261

Search results for: mass flux.

1231 Double Flux Orientation Control for a Doubly Fed Induction Machine

Authors: A. Ourici

Abstract:

Doubly fed induction machines DFIM are used mainly for wind energy conversion in MW power plants. This paper presents a new strategy of field oriented control ,it is based on the principle of a double flux orientation of stator and rotor at the same time. Therefore, the orthogonality created between the two oriented fluxes, which must be strictly observed, leads to generate a linear and decoupled control with an optimal torque. The obtained simulation results show the feasibility and the effectiveness of the suggested method.

Keywords: Doubly fed induction machine, double fluxorientation control , vector control , PWM inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
1230 Mass Transfer of Palm Kernel Oil under Supercritical Conditions

Authors: I. Norhuda, A. K. Mohd Omar

Abstract:

The purpose of the study was to determine the amount of Palm Kernel Oil (PKO) extracted from a packed bed of palm kernels in a supercritical fluid extractor using supercritical carbon dioxide (SC-CO2) as an environmental friendly solvent. Further, the study sought to ascertain the values of the overall mass transfer coefficient (K) of PKO evaluation through a mass transfer model, at constant temperature of 50 °C, 60 °C, and 70 °C and pressures range from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa respectively. Finally, the study also seeks to demonstrate the application of the overall mass transfer coefficient values in relation to temperature and pressure. The overall mass transfer coefficient was found to be dependent pressure at each constant temperature of 50 °C, 60 °C and 70 °C. The overall mass transfer coefficient for PKO in a packed bed of palm kernels was found to be in the range of 1.21X 10-4 m min-1 to 1.72 X 10-4 m min-1 for a constant temperature of 50 °C and in the range of 2.02 X 10-4 m min-1 to 2.43 X 10-4 m min-1 for a constant temperature of 60 °C. Similar increasing trend of the overall mass transfer coefficient from 1.77 X 10-4 m min-1 to 3.64 X 10-4 m min-1 was also observed at constant temperature of 70 °C within the same pressure range from 27.6 MPa to 48.3 MPa.

Keywords: Overall Mass Transfer Coefficient (D), Supercritical Carbon Dioxide (SC-CO2), Palm Kernel Oil (PKO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
1229 Vacuum Membrane Distillation for Desalination of Ground Water by using Flat Sheet Membrane

Authors: Bhausaheb L. Pangarkar, M.G. Sane, Saroj B. Parjane, Mahendra Guddad

Abstract:

The possibility of producing drinking water from brackish ground water using Vacuum membrane distillation (VMD) process was studied. It is a rising technology for seawater or brine desalination process. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. In this work, VMD performance was investigated for aqueous NaCl solution and natural ground water. The influence of operational parameters such as feed flow rate (30 to 55 l/h), feed temperature (313 to 333 K), feed salt concentration (5000 to 7000 mg/l) and permeate pressure (1.5 to 6 kPa) on the membrane distillation (MD) permeation flux have been investigated. The maximum flux reached to 28.34 kg/m2 h at feed temperature, 333 K; vacuum pressure, 1.5 kPa; feed flow rate, 55 l/h and feed salt concentration, 7000 mg/l. The negligible effects in the reduction of permeate flux found over 150 h experimental run for salt water. But for the natural ground water application over 75 h, scale deposits observed on the membrane surface and 29% reduction in the permeate flux over 75 h. This reduction can be eliminated by acidification of feed water. Hence, promote the research attention in apply of VMD for the ground water purification over today-s conventional RO operation.

Keywords: VMD, hydrophobic PTFE flat membrane, desalination, ground water

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3249
1228 Using Reverse Osmosis Membrane for Chromium Removal from Aqueous Solution

Authors: S. A. Mousavi Rad, S. A. Mirbagheri, T. Mohammadi

Abstract:

In this paper, removal of chromium(VI) from aqueous solution has been researched using reverse osmosis. The influence of transmembrane pressure and feed concentration on permeate flux, water recovery, permeate concentration, and salt rejection was studied. The results showed that according to the variation of transmembrane pressure and feed concentration, the permeate flux and salt rejection were in the range 19.17 to 58.75 l/m2.min and 99.51 to 99.8 %, respectively. The highest permeate flux, 58.75 l/m2.min, and water recovery, 42.47 %, were obtained in the highest pressure and the lowest feed concentration. On the other hand, the lowest permeate concentration, 0.01 mg/l, and the highest salt rejection, 99.8 %, were obtained in the highest pressure and the lowest feed concentration.

Keywords: solution, Chromium, Removal, Reverse osmosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
1227 Fuzzy Logic Speed Controller for Direct Vector Control of Induction Motor

Authors: Ben Hamed M., Sbita L

Abstract:

This paper presents a new method for the implementation of a direct rotor flux control (DRFOC) of induction motor (IM) drives. It is based on the rotor flux components regulation. The d and q axis rotor flux components feed proportional integral (PI) controllers. The outputs of which are the target stator voltages (vdsref and vqsref). While, the synchronous speed is depicted at the output of rotor speed controller. In order to accomplish variable speed operation, conventional PI like controller is commonly used. These controllers provide limited good performances over a wide range of operations even under ideal field oriented conditions. An alternate approach is to use the so called fuzzy logic controller. The overall investigated system is implemented using dSpace system based on digital signal processor (DSP). Simulation and experimental results have been presented for a one kw IM drives to confirm the validity of the proposed algorithms.

Keywords: DRFOC, fuzzy logic, variable speed drives, control, IM and real time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
1226 Is It Important to Measure the Volumetric Mass Density of Nanofluids?

Authors: Z. Haddad, C. Abid, O. Rahli, O. Margeat, W. Dachraoui, A. Mataoui

Abstract:

The present study aims to measure the volumetric mass density of NiPd-heptane nanofluids synthesized using a one step method known as thermal decomposition of metal-surfactant complexes. The particle concentration is up to 7.55g/l and the temperature range of the experiment is from 20°C to 50°C. The measured values were compared with the mixture theory and good agreement between the theoretical equation and measurement were obtained. Moreover, the available nanofluids volumetric mass density data in the literature is reviewed.

Keywords: NiPd nanoparticles, nanofluids, volumetric mass density, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631
1225 Performance of Air Gap Membrane Distillation for Desalination of Ground Water and Seawater

Authors: Bhausaheb L. Pangarkar, M.G. Sane

Abstract:

Membrane distillation (MD) is a rising technology for seawater or brine desalination process. In this work, an air gap membrane distillation (AGMD) performance was investigated for aqueous NaCl solution along with natural ground water and seawater. In order to enhance the performance of the AGMD process in desalination, that is, to get more flux, it is necessary to study the effect of operating parameters on the yield of distillate water. The influence of operational parameters such as feed flow rate, feed temperature, feed salt concentration, coolant temperature and air gap thickness on the membrane distillation (MD) permeation flux have been investigated for low and high salt solution. the natural application of ground water and seawater over 90 h continuous operation, scale deposits observed on the membrane surface and reduction in flux represents 23% for ground water and 60% for seawater, in 90 h. This reduction was eliminated (less than 14 %) by acidification of feed water. Hence, promote the research attention in apply of AGMD for the ground water as well as seawater desalination over today-s conventional RO operation.

Keywords: MD, ground water, seawater, AGMD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
1224 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models

Authors: P. Srinivas, P. V. N. Prasad

Abstract:

Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands.

The DTC of SRM is analyzed by two methods. In one method, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.

Keywords: Direct Toque Control, Simplified Torque Equation, Finite Element Analysis, Torque Ripple.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3472
1223 Simulation of Thermal Storage Phase Change Material in Buildings

Authors: Samira Haghshenaskashani, Hadi Pasdarshahri

Abstract:

One of the potential and effective ways of storing thermal energy in buildings is the integration of brick with phase change materials (PCMs). This paper presents a two-dimensional model for simulating and analyzing of PCM in order to minimize energy consumption in the buildings. The numerical approach has been used with the real weather data of a selected city of Iran (Tehran). Two kinds of brick integrated PCM are investigated and compared base on outdoor weather conditions and the amount of energy consumption. The results show a significant reduction in maximum entering heat flux to building about 32.8% depending on PCM quantity. The results are analyzed by various temperature contour plots. The contour plots illustrated the time dependent mechanism of entering heat flux for a brick integrated with PCM. Further analysis is developed to investigate the effect of PCM location on the inlet heat flux. The results demonstrated that to achieve maximum performance of PCM it is better to locate PCM near the outdoor.

Keywords: Building, Energy Storage, PCM, Phase Change Material

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
1222 Improvement Approach on Rotor Time Constant Adaptation with Optimum Flux in IFOC for Induction Machines Drives

Authors: S. Grouni, R. Ibtiouen, M. Kidouche, O. Touhami

Abstract:

Induction machine models used for steady-state and transient analysis require machine parameters that are usually considered design parameters or data. The knowledge of induction machine parameters is very important for Indirect Field Oriented Control (IFOC). A mismatched set of parameters will degrade the response of speed and torque control. This paper presents an improvement approach on rotor time constant adaptation in IFOC for Induction Machines (IM). Our approach tends to improve the estimation accuracy of the fundamental model for flux estimation. Based on the reduced order of the IM model, the rotor fluxes and rotor time constant are estimated using only the stator currents and voltages. This reduced order model offers many advantages for real time identification parameters of the IM.

Keywords: Indirect Field Oriented Control (IFOC), InductionMachine (IM), Rotor Time Constant, Parameters ApproachAdaptation. Optimum rotor flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
1221 An Accurate Prediction of Surface Temperature History in a Supersonic Flight

Authors: A. M. Tahsini, S. A. Hosseini

Abstract:

In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux and the one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.

Keywords: Aerodynamic heating, Heat conduction, Numerical simulation, Supersonic flight, Launch vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
1220 The Effect of Ultrasound on Permeation Flux and Changes in Blocking Mechanisms during Dead-End Microfiltration of Carrot Juice

Authors: A. Hemmati, H. Mirsaeedghazi, M. Aboonajmi

Abstract:

Carrot juice is one of the most nutritious foods that are consumed around the world. Large particles in carrot juice causing turbid appearance make some problems in the concentration process such as off-flavor due to the large particles burnt on the walls of evaporators. Microfiltration (MF) is a pressure driven membrane separation method that can clarify fruit juices without enzymatic treatment. Fouling is the main problem in the membrane process causing reduction of permeate flux. Ultrasound as a cleaning technique was applied at 20 kHz to reduce fouling in membrane clarification of carrot juice using dead-end MF system with polyvinylidene fluoride (PVDF) membrane. Results showed that application of ultrasound waves reduce diphasic characteristic of carrot juice and permeate flux increased. Evaluation of different membrane fouling mechanisms showed that application of ultrasound waves changed creation time of each fouling mechanism. Also, its behavior was changed with varying transmembrane pressure.

Keywords: Carrot juice, dead end, microfiltration, ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
1219 Modeling the Effect of Spacer Orientation on Heat Transfer in Membrane Distillation

Authors: M. Shakaib, M. Ehtesham-ul Haq, I. Ahmed, R.M. Yunus

Abstract:

Computational fluid dynamics (CFD) simulations carried out in this paper show that spacer orientation has a major influence on temperature patterns and on the heat transfer rates. The local heat flux values significantly vary from high to very low values at each filament when spacer touches the membrane surface. The heat flux profile is more uniform when spacer filaments are not in contact with the membrane thus making this arrangement more beneficial. The temperature polarization is also found to be less in this case when compared to the empty channel.

Keywords: heat transfer, membrane distillation, spacer, temperature polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1218 Steady State Thermal Analysis and Design of a Cooling System in an AFPM Motor

Authors: K. Sarrafan, A. Darabi

Abstract:

In this paper, the steady-state temperature of a sample 500 KW two rotor one stator Non-slotted axial flux permanent magnet motor is calculated using the finite element simulator software package. Due to the high temperature in various parts of the machine, especially at stator winding, a cooling system is designed for the motor and the temperature is recalculated. The results show that the temperature obtained for the parts is within the permissible range.

Keywords: Axial Flux, Cooling System, Permanent Magnet, Thermal Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
1217 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method

Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad

Abstract:

The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.

Keywords: Finite element method, flux density, transformer, voltage gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
1216 X-Ray Energy Release in the Solar Eruptive Flare from 6th of September 2012

Authors: Mirabbos Mirkamalov, Zavkiddin Mirtoshev

Abstract:

The M 1.6 class flare occurred on 6th of September 2012. Our observations correspond to the active region NOAA 11560 with the heliographic coordinates N04W71. The event took place between 04:00 UT and 04:45 UT, and was close to the solar limb at the western region. The flare temperature correlates with flux peak, increases for a short period (between 04:08 UT and 04:12 UT), rises impulsively, attains a maximum value of about 17 MK at 04:12 UT and gradually decreases after peak value. Around the peak we observe significant emissions of X-ray sources. Flux profiles of the X-ray emission exhibit a progressively faster raise and decline as the higher energy channels are considered.

Keywords: Magnetic reconnection, solar atmosphere, solar flare, X-ray emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
1215 Performance Enhancement of Membrane Distillation Process in Fruit Juice Concentration by Membrane Surface Modification

Authors: Samir K. Deshmukh, Mayur M. Tajane

Abstract:

In this work Membrane Distillation is applied to concentrate orange Juice. Clarified orange juice (11o Brix) obtained from fresh fruits and a sugar solution was subjected to membrane distillation. The experiments were performed on a flat sheet module using orange juice and sucrose solution as feeds. The concentration of a sucrose solution, used as a model fruit juice and also orange juice, was carried out in a direct contact membrane distillation using hydrophobic PTFE membrane of pore size 0.2 μm and porosity 70%. Surface modification of PTFE membrane has been carried out by treating membrane with alcohol and water solution to make it hydrophilic and then hydrophobicity was regained by drying. The influences of the feed temperature, feed concentration, flow rate, operating time on the permeate flux were studied for treated and non treated membrane. In this work treated and non treated membrane were compared in terms of water flux, Within the tested range, MD with surface modified membrane the water flux has been significantly improved by treating the membrane surface.

Keywords: Membrane Distillation, Surface Modification, Orange Juice. Polytetrafluoroethylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
1214 Sensorless Backstepping Control Using an Adaptive Luenberger Observer with Three Levels NPC Inverter

Authors: A. Bennassar, A. Abbou, M. Akherraz, M. Barara

Abstract:

In this paper, we propose a sensorless backstepping control of induction motor (IM) associated with three levels neutral clamped (NPC) inverter. First, the backstepping approach is designed to steer the flux and speed variables to theirs references and to compensate the uncertainties. A Lyapunov theory is used and it demonstrates that the dynamic trajectories tracking are asymptotically stable. Second, we estimate the rotor flux and speed by using the adaptive Luenberger observer (ALO). Simulation results are provided to illustrate the performance of the proposed approach in high and low speeds and load torque disturbance.

Keywords: Sensorless backstepping, IM, Three levels NPC inverter, Lyapunov theory, ALO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
1213 Simulation of Ammonia-Water Two Phase Flow in Bubble Pump

Authors: Jemai Rabeb, Benhmidene Ali, Hidouri Khaoula, Chaouachi Bechir

Abstract:

The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.

Keywords: Bubble pump, drift flow model, instability, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
1212 The Female Beauty Myth Fostered by the Mass Media

Authors: Yoojin Chung

Abstract:

This paper starts with a critical view of beautiful female images in the mass media being frequently generated by a stereotypical Korean concept of beauty. Several female beauty myths have evolved in Korea during the present decade. Nearly all of them have formed due to a deeply-ingrained androcentric ideology which objectifies women. Mass media causes the public to hold a distorted concept about female beauty. There is a huge gap between women in reality and representative women in the mass media. It is essential to have an unbiased perception of female images presented in the mass media. Due to cosmetic advertisements projecting contemporary images of female beauty to promote products, cosmetics images will be examined in regard to female beauty myths portrayed by the mass media. This paper will analyze features of female beauty myths in Korea and their intrinsic characteristics.

Keywords: Cosmetics Advertisements, Female Beauty Myth, Korean ideologies, Roland Barthes' Mythology Theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3837
1211 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen

Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying

Abstract:

One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.

Keywords: Reactor, modeling, methanol, steam reforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
1210 Response Surface Methodology Approach to Defining Ultrafiltration of Steepwater from Corn Starch Industry

Authors: Zita I. Šereš, Ljubica P. Dokić, Dragana M. Šoronja Simović, Cecilia Hodur, Zsuzsanna Laszlo, Ivana Nikolić, Nikola Maravić

Abstract:

In this work the concentration of steepwater from corn starch industry is monitored using ultrafiltration membrane. The aim was to examine the conditions of ultrafiltration of steepwater by applying the membrane of 2.5nm. The parameters that vary during the course of ultrafiltration, were the transmembrane pressure, flow rate, while the permeate flux and the dry matter content of permeate and retentate were the dependent parameter constantly monitored during the process. Experiments of ultrafiltration are conducted on the samples of steepwater, which were obtained from the starch wet milling plant „Jabuka“ Pancevo. The procedure of ultrafiltration on a single-channel 250mm lenght, with inner diameter of 6.8mm and outer diameter of 10mm membrane were carried on. The membrane is made of a-Al2O3 with TiO2 layer obtained from GEA (Germany). The experiments are carried out at a flow rate ranging from 100 to 200lh-1 and transmembrane pressure of 1-3 bars. During the experiments of steepwater ultrafiltration, the change of permeate flux, dry matter content of permeate and retentate, as well as the absorbance changes of the permeate and retentate were monitored. The experimental results showed that the maximum flux reaches about 40lm-2h-1. For responses obtained after experiments, a polynomial model of the second degree is established to evaluate and quantify the influence of the variables. The quadratic equitation fits with the experimental values, where the coefficient of determination for flux is 0.96. The dry matter content of the retentate is increased for about 6%, while the dry matter content of permeate was reduced for about 35-40%, respectively. During steepwater ultrafiltration in permeate stays 40% less dry matter compared to the feed.

Keywords: Ultrafiltration, steepwater, starch industry, ceramic membrane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
1209 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer

Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja–Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin

Abstract:

New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1–3 bars and in range of flow rate of 50–150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50–70 l/m2h. The obtained turbidity decrease was in the range of 50-99 % and total amount of suspended solids was removed.

Keywords: Ceramic membrane, microfiltration, sugar industry, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
1208 Novel SNC-NN-MRAS Based Speed Estimator for Sensor-Less Vector Controlled IM Drives

Authors: A.Venkadesan, S.Himavathi, A.Muthuramalingam

Abstract:

Rotor Flux based Model Reference Adaptive System (RF-MRAS) is the most popularly used conventional speed estimation scheme for sensor-less IM drives. In this scheme, the voltage model equations are used for the reference model. This encounters major drawbacks at low frequencies/speed which leads to the poor performance of RF-MRAS. Replacing the reference model using Neural Network (NN) based flux estimator provides an alternate solution and addresses such drawbacks. This paper identifies an NN based flux estimator using Single Neuron Cascaded (SNC) Architecture. The proposed SNC-NN model replaces the conventional voltage model in RF-MRAS to form a novel MRAS scheme named as SNC-NN-MRAS. Through simulation the proposed SNC-NN-MRAS is shown to be promising in terms of all major issues and robustness to parameter variation. The suitability of the proposed SNC-NN-MRAS based speed estimator and its advantages over RF-MRAS for sensor-less induction motor drives is comprehensively presented through extensive simulations.

Keywords: Sensor-less operation, vector-controlled IM drives, SNC-NN-MRAS, single neuron cascaded architecture, RF-MRAS, artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
1207 Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin

Authors: A. A. Hekmatzadeh, A. Karimi-Jashani, N. Talebbeydokhti

Abstract:

The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.

Keywords: External mass transfer, pore volume diffusion, surface diffusion, mass action law isotherm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
1206 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing

Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko

Abstract:

The article presents a plasma chemical technology for processing solid fuels, using examples of bituminous and brown coals. Thermodynamic and experimental investigation of the technology was made. The technology allows producing synthesis gas from the coal organic mass and valuable components (technical silicon, ferrosilicon, aluminum, and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, etc.) from the mineral mass. The thusly produced highcalorific synthesis gas can be used for synthesis of methanol, as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants.

Keywords: Gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
1205 Automatic Detection of Mass Type Breast Cancer using Texture Analysis in Korean Digital Mammography

Authors: E. B. Jo, J. H. Lee, J. Y. Park, S. M. Kim

Abstract:

In this study, we present an advanced detection technique for mass type breast cancer based on texture information of organs. The proposed method detects the cancer areas in three stages. In the first stage, the midpoints of mass area are determined based on AHE (Adaptive Histogram Equalization). In the second stage, we set the threshold coefficient of homogeneity by using MLE (Maximum Likelihood Estimation) to compute the uniformity of texture. Finally, mass type cancer tissues are extracted from the original image. As a result, it was observed that the proposed method shows an improved detection performance on dense breast tissues of Korean women compared with the existing methods. It is expected that the proposed method may provide additional diagnostic information for detection of mass-type breast cancer.

Keywords: Mass Type Breast Cancer, Mammography, Maximum Likelihood Estimation (MLE), Ranklets, SVM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
1204 A Cell-centered Diffusion Finite Volume Scheme and it's Application to Magnetic Flux Compression Generators

Authors: Qiang Zhao, Yina Shi, Guangwei Yuan, Zhiwei Dong

Abstract:

A cell-centered finite volume scheme for discretizing diffusion operators on distorted quadrilateral meshes has recently been designed and added to APMFCG to enable that code to be used as a tool for studying explosive magnetic flux compression generators. This paper describes this scheme. Comparisons with analytic results for 2-D test cases are presented, as well as 2-D results from a test of a "realistic" generator configuration.

Keywords: Cell-centered FVM, distorted meshes, diffusion scheme, MFCG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
1203 Flat Miniature Heat Pipes for Electronics Cooling: State of the Art, Experimental and Theoretical Analysis

Authors: M.C. Zaghdoudi, S. Maalej, J. Mansouri, M.B.H. Sassi

Abstract:

An experimental study is realized in order to verify the Mini Heat Pipe (MHP) concept for cooling high power dissipation electronic components and determines the potential advantages of constructing mini channels as an integrated part of a flat heat pipe. A Flat Mini Heat Pipe (FMHP) prototype including a capillary structure composed of parallel rectangular microchannels is manufactured and a filling apparatus is developed in order to charge the FMHP. The heat transfer improvement obtained by comparing the heat pipe thermal resistance to the heat conduction thermal resistance of a copper plate having the same dimensions as the tested FMHP is demonstrated for different heat input flux rates. Moreover, the heat transfer in the evaporator and condenser sections are analyzed, and heat transfer laws are proposed. In the theoretical part of this work, a detailed mathematical model of a FMHP with axial microchannels is developed in which the fluid flow is considered along with the heat and mass transfer processes during evaporation and condensation. The model is based on the equations for the mass, momentum and energy conservation, which are written for the evaporator, adiabatic, and condenser zones. The model, which permits to simulate several shapes of microchannels, can predict the maximum heat transfer capacity of FMHP, the optimal fluid mass, and the flow and thermal parameters along the FMHP. The comparison between experimental and model results shows the good ability of the numerical model to predict the axial temperature distribution along the FMHP.

Keywords: Electronics Cooling, Micro Heat Pipe, Mini Heat Pipe, Mini Heat Spreader, Capillary grooves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3887
1202 Mass Transfer Modeling in a Packed Bed of Palm Kernels under Supercritical Conditions

Authors: I. Norhuda, A. K. Mohd Omar

Abstract:

Studies on gas solid mass transfer using Supercritical fluid CO2 (SC-CO2) in a packed bed of palm kernels was investigated at operating conditions of temperature 50 °C and 70 °C and pressures ranges from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa. The development of mass transfer models requires knowledge of three properties: the diffusion coefficient of the solute, the viscosity and density of the Supercritical fluids (SCF). Matematical model with respect to the dimensionless number of Sherwood (Sh), Schmidt (Sc) and Reynolds (Re) was developed. It was found that the model developed was found to be in good agreement with the experimental data within the system studied.

Keywords: Mass Transfer, Palm Kernel, Supercritical fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792