Search results for: iteration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 123

Search results for: iteration

93 IPSO Based UPFC Robust Output Feedback Controllers for Damping of Low Frequency Oscillations

Authors: A. Safari, H. Shayeghi, H. A. Shayanfar

Abstract:

On the basis of the linearized Phillips-Herffron model of a single-machine power system, a novel method for designing unified power flow controller (UPFC) based output feedback controller is presented. The design problem of output feedback controller for UPFC is formulated as an optimization problem according to with the time domain-based objective function which is solved by iteration particle swarm optimization (IPSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results prove the effectiveness and robustness of the proposed method in terms of a high performance power system. The simulation study shows that the designed controller by Iteration PSO performs better than Classical PSO in finding the solution.

Keywords: UPFC, IPSO, output feedback Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
92 Enhanced Shell Sorting Algorithm

Authors: Basit Shahzad, Muhammad Tanvir Afzal

Abstract:

Many algorithms are available for sorting the unordered elements. Most important of them are Bubble sort, Heap sort, Insertion sort and Shell sort. These algorithms have their own pros and cons. Shell Sort which is an enhanced version of insertion sort, reduces the number of swaps of the elements being sorted to minimize the complexity and time as compared to insertion sort. Shell sort improves the efficiency of insertion sort by quickly shifting values to their destination. Average sort time is O(n1.25), while worst-case time is O(n1.5). It performs certain iterations. In each iteration it swaps some elements of the array in such a way that in last iteration when the value of h is one, the number of swaps will be reduced. Donald L. Shell invented a formula to calculate the value of ?h?. this work focuses to identify some improvement in the conventional Shell sort algorithm. ''Enhanced Shell Sort algorithm'' is an improvement in the algorithm to calculate the value of 'h'. It has been observed that by applying this algorithm, number of swaps can be reduced up to 60 percent as compared to the existing algorithm. In some other cases this enhancement was found faster than the existing algorithms available.

Keywords: Algorithm, Computation, Shell, Sorting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3136
91 Effects of Introducing Similarity Measures into Artificial Bee Colony Approach for Optimization of Vehicle Routing Problem

Authors: P. Shunmugapriya, S. Kanmani, P. Jude Fredieric, U. Vignesh, J. Reman Justin, K. Vivek

Abstract:

Vehicle Routing Problem (VRP) is a complex combinatorial optimization problem and it is quite difficult to find an optimal solution consisting of a set of routes for vehicles whose total cost is minimum. Evolutionary and swarm intelligent (SI) algorithms play a vital role in solving optimization problems. While the SI algorithms perform search, the diversity between the solutions they exploit is very important. This is because of the need to avoid early convergence and to get an appropriate balance between the exploration and exploitation. Therefore, it is important to check how far the solutions are diverse. In this paper, we measure the similarity between solutions, which ABC exploits while optimizing VRP. The similar solutions found are discarded at the end of the iteration and only unique solutions are passed on to the next iteration. The bees of discarded solutions become scouts and they start searching for new solutions. This process is continued and results show that the solution is optimized at lesser number of iterations but with the overhead of computing similarity in all the iterations. The problem instance from Solomon benchmarked dataset has been used for evaluating the presented methodology.

Keywords: ABC algorithm, vehicle routing problem, optimization, Jaccard’s similarity measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
90 A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations

Authors: Vineet K. Srivastava, Mukesh K. Awasthi, Mohammad Tamsir

Abstract:

A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.

Keywords: Burgers’ equation, Implicit Finite-difference method, Newton’s method, Gauss elimination with partial pivoting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5945
89 Analytical Formulae for the Approach Velocity Head Coefficient

Authors: Abdulrahman Abdulrahman

Abstract:

Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution.

Keywords: Broad crested weir, combined control meter, control structures, critical flow, discharge measurement, flow control, hydraulic engineering, hydraulic structures, open channel flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
88 A Review of Methods for 2D/3D Registration

Authors: Panos D. Kotsas, Tony Dodd

Abstract:

2D/3D registration is a special case of medical image registration which is of particular interest to surgeons. Applications of 2D/3D registration are [1] radiotherapy planning and treatment verification, spinal surgery, hip replacement, neurointerventions and aortic stenting. The purpose of this paper is to provide a literature review of the main methods for image registration for the 2D/3D case. At the end of the paper an algorithm is proposed for 2D/3D registration based on the Chebyssev polynomials iteration loop.

Keywords: Medical image registration, review, 2D/3D

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2945
87 Load Flow Analysis: An Overview

Authors: P. S. Bhowmik, D. V. Rajan, S. P. Bose

Abstract:

The load flow study in a power system constitutes a study of paramount importance. The study reveals the electrical performance and power flows (real and reactive) for specified condition when the system is operating under steady state. This paper gives an overview of different techniques used for load flow study under different specified conditions.

Keywords: Load Flow Studies, Y-matrix and Z-matrix iteration, Newton-Raphson method, Fast Decoupled method, Fuzzy logic, Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6858
86 An Iterative Algorithm to Compute the Generalized Inverse A(2) T,S Under the Restricted Inner Product

Authors: Xingping Sheng

Abstract:

Let T and S be a subspace of Cn and Cm, respectively. Then for A ∈ Cm×n satisfied AT ⊕ S = Cm, the generalized inverse A(2) T,S is given by A(2) T,S = (PS⊥APT )†. In this paper, a finite formulae is presented to compute generalized inverse A(2) T,S under the concept of restricted inner product, which defined as < A,B >T,S=< PS⊥APT,B > for the A,B ∈ Cm×n. By this iterative method, when taken the initial matrix X0 = PTA∗PS⊥, the generalized inverse A(2) T,S can be obtained within at most mn iteration steps in absence of roundoff errors. Finally given numerical example is shown that the iterative formulae is quite efficient.

Keywords: Generalized inverse A(2) T, S, Restricted inner product, Iterative method, Orthogonal projection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
85 Futures Trading: Design of a Strategy

Authors: Jan Zeman

Abstract:

The paper describes the futures trading and aims to design the speculators trading strategy. The problem is formulated as the decision making task and such as is solved. The solution of the task leads to complex mathematical problems and the approximations of the decision making is demanded. Two kind of approximation are used in the paper: Monte Carlo for the multi-step prediction and iteration spread in time for the optimization. The solution is applied to the real-market data and the results of the off-line experiments are presented.

Keywords: futures trading, decision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
84 Some Results on Preconditioned Modified Accelerated Overrelaxation Method

Authors: Guangbin Wang, Deyu Sun, Fuping Tan

Abstract:

In this paper, we present new preconditioned modified accelerated overrelaxation (MAOR) method for solving linear systems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned MAOR method converges faster than the MAOR method whenever the MAOR method is convergent. Finally, we give one numerical example to confirm our theoretical results.

Keywords: preconditioned, MAOR method, linear system, convergence, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
83 The Performance of Alternating Top-Bottom Strategy for Successive Over Relaxation Scheme on Two Dimensional Boundary Value Problem

Authors: M. K. Hasan, Y. H. Ng, J. Sulaiman

Abstract:

This paper present the implementation of a new ordering strategy on Successive Overrelaxation scheme on two dimensional boundary value problems. The strategy involve two directions alternatingly; from top and bottom of the solution domain. The method shows to significantly reduce the iteration number to converge. Four numerical experiments were carried out to examine the performance of the new strategy.

Keywords: Two dimensional boundary value problems, Successive Overrelaxation scheme, Alternating Top-Bottom strategy, fast convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
82 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties

Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd

Abstract:

Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well known formulas.

Keywords: Conjugate gradient method, conjugate gradient coefficient, global convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
81 Some Third Order Methods for Solving Systems of Nonlinear Equations

Authors: Janak Raj Sharma, Rajni Sharma

Abstract:

Based on Traub-s methods for solving nonlinear equation f(x) = 0, we develop two families of third-order methods for solving system of nonlinear equations F(x) = 0. The families include well-known existing methods as special cases. The stability is corroborated by numerical results. Comparison with well-known methods shows that the present methods are robust. These higher order methods may be very useful in the numerical applications requiring high precision in their computations because these methods yield a clear reduction in number of iterations.

Keywords: Nonlinear equations and systems, Newton's method, fixed point iteration, order of convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
80 Two Fourth-order Iterative Methods Based on Continued Fraction for Root-finding Problems

Authors: Shengfeng Li, Rujing Wang

Abstract:

In this paper, we present two new one-step iterative methods based on Thiele-s continued fraction for solving nonlinear equations. By applying the truncated Thiele-s continued fraction twice, the iterative methods are obtained respectively. Analysis of convergence shows that the new methods are fourth-order convergent. Numerical tests verifying the theory are given and based on the methods, two new one-step iterations are developed.

Keywords: Iterative method, Fixed-point iteration, Thiele's continued fraction, Order of convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
79 Some Results on New Preconditioned Generalized Mixed-Type Splitting Iterative Methods

Authors: Guangbin Wang, Fuping Tan, Deyu Sun

Abstract:

In this paper, we present new preconditioned generalized mixed-type splitting (GMTS) methods for solving weighted linear least square problems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GMTS methods converge faster than the GMTS method whenever the GMTS method is convergent. Finally, we give a numerical example to confirm our theoretical results.

Keywords: Preconditioned, GMTS method, linear system, convergence, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
78 Automatic Iterative Methods for the Multivariate Solution of Nonlinear Algebraic Equations

Authors: Rafat Alshorman, Safwan Al-Shara', I. Obeidat

Abstract:

Most real world systems express themselves formally as a set of nonlinear algebraic equations. As applications grow, the size and complexity of these equations also increase. In this work, we highlight the key concepts in using the homotopy analysis method as a methodology used to construct efficient iteration formulas for nonlinear equations solving. The proposed method is experimentally characterized according to a set of determined parameters which affect the systems. The experimental results show the potential and limitations of the new method and imply directions for future work.

Keywords: Nonlinear Algebraic Equations, Iterative Methods, Homotopy Analysis Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
77 New Efficient Iterative Optimization Algorithm to Design the Two Channel QMF Bank

Authors: Ram Kumar Soni, Alok Jain, Rajiv Saxena

Abstract:

This paper proposes an efficient method for the design of two channel quadrature mirror filter (QMF) bank. To achieve minimum value of reconstruction error near to perfect reconstruction, a linear optimization process has been proposed. Prototype low pass filter has been designed using Kaiser window function. The modified algorithm has been developed to optimize the reconstruction error using linear objective function through iteration method. The result obtained, show that the performance of the proposed algorithm is better than that of the already exists methods.

Keywords: Filterbank, near perfect reconstruction, Kaiserwindow, QMF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
76 Proximal Parallel Alternating Direction Method for Monotone Structured Variational Inequalities

Authors: Min Sun, Jing Liu

Abstract:

In this paper, we focus on the alternating direction method, which is one of the most effective methods for solving structured variational inequalities(VI). In fact, we propose a proximal parallel alternating direction method which only needs to solve two strongly monotone sub-VI problems at each iteration. Convergence of the new method is proved under mild assumptions. We also present some preliminary numerical results, which indicate that the new method is quite efficient.

Keywords: structured variational inequalities, proximal point method, global convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
75 Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method

Authors: M. K. Balyan

Abstract:

The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented – method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method.

Keywords: Dynamical diffraction, hologram, object image, X-ray holography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
74 Preconditioned Generalized Accelerated Overrelaxation Methods for Solving Certain Nonsingular Linear System

Authors: Deyu Sun, Guangbin Wang

Abstract:

In this paper, we present preconditioned generalized accelerated overrelaxation (GAOR) methods for solving certain nonsingular linear system. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GAOR methods converge faster than the GAOR method whenever the GAOR method is convergent. Finally, we give two numerical examples to confirm our theoretical results.

Keywords: Preconditioned, GAOR method, linear system, convergence, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
73 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm

Authors: Essam Al Daoud

Abstract:

This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.

Keywords: Least squares, neighbor joining, phylogenetic tree, wild dogpack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
72 Gauss-Seidel Iterative Methods for Rank Deficient Least Squares Problems

Authors: Davod Khojasteh Salkuyeh, Sayyed Hasan Azizi

Abstract:

We study the semiconvergence of Gauss-Seidel iterative methods for the least squares solution of minimal norm of rank deficient linear systems of equations. Necessary and sufficient conditions for the semiconvergence of the Gauss-Seidel iterative method are given. We also show that if the linear system of equations is consistent, then the proposed methods with a zero vector as an initial guess converge in one iteration. Some numerical results are given to illustrate the theoretical results.

Keywords: rank deficient least squares problems, AOR iterativemethod, Gauss-Seidel iterative method, semiconvergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
71 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides

Authors: R. B. Ogunrinde, C. C. Jibunoh

Abstract:

In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.

Keywords: Spectral decomposition, eigenvalues of the Jacobian, linear RHS, homogeneous linear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150
70 Ordinary Differential Equations with Inverted Functions

Authors: Thomas Kampke

Abstract:

Equations with differentials relating to the inverse of an unknown function rather than to the unknown function itself are solved exactly for some special cases and numerically for the general case. Invertibility combined with differentiability over connected domains forces solutions always to be monotone. Numerical function inversion is key to all solution algorithms which either are of a forward type or a fixed point type considering whole approximate solution functions in each iteration. The given considerations are restricted to ordinary differential equations with inverted functions (ODEIs) of first order. Forward type computations, if applicable, admit consistency of order one and, under an additional accuracy condition, convergence of order one.

Keywords: Euler method, fixed points, golden section, multi-step procedures, Runge Kutta methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
69 Inexact Alternating Direction Method for Variational Inequality Problems with Linear Equality Constraints

Authors: Min Sun, Jing Liu

Abstract:

In this article, a new inexact alternating direction method(ADM) is proposed for solving a class of variational inequality problems. At each iteration, the new method firstly solves the resulting subproblems of ADM approximately to generate an temporal point ˜xk, and then the multiplier yk is updated to get the new iterate yk+1. In order to get xk+1, we adopt a new descent direction which is simple compared with the existing prediction-correction type ADMs. For the inexact ADM, the resulting proximal subproblem has closedform solution when the proximal parameter and inexact term are chosen appropriately. We show the efficiency of the inexact ADM numerically by some preliminary numerical experiments.

Keywords: variational inequality problems, alternating direction method, global convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
68 Parallel Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

Authors: Khairil Iskandar Othman, Zarina Bibi Ibrahim, Mohamed Suleiman

Abstract:

A parallel block method based on Backward Differentiation Formulas (BDF) is developed for the parallel solution of stiff Ordinary Differential Equations (ODEs). Most common methods for solving stiff systems of ODEs are based on implicit formulae and solved using Newton iteration which requires repeated solution of systems of linear equations with coefficient matrix, I - hβJ . Here, J is the Jacobian matrix of the problem. In this paper, the matrix operations is paralleled in order to reduce the cost of the iterations. Numerical results are given to compare the speedup and efficiency of parallel algorithm and that of sequential algorithm.

Keywords: Backward Differentiation Formula, block, ordinarydifferential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
67 An Approximate Solution of the Classical Van der Pol Oscillator Coupled Gyroscopically to a Linear Oscillator Using Parameter-Expansion Method

Authors: Mohammad Taghi Darvishi, Samad Kheybari

Abstract:

In this article, we are dealing with a model consisting of a classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. The major problem is analyzed. The regular dynamics of the system is considered using analytical methods. In this case, we provide an approximate solution for this system using parameter-expansion method. Also, we find approximate values for frequencies of the system. In parameter-expansion method the solution and unknown frequency of oscillation are expanded in a series by a bookkeeping parameter. By imposing the non-secularity condition at each order in the expansion the method provides different approximations to both the solution and the frequency of oscillation. One iteration step provides an approximate solution which is valid for the whole solution domain.

Keywords: Parameter-expansion method, classical Van der Pol oscillator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
66 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques

Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan

Abstract:

Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.

Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
65 MEGSOR Iterative Scheme for the Solution of 2D Elliptic PDE's

Authors: J. Sulaiman, M. Othman, M. K. Hasan

Abstract:

Recently, the findings on the MEG iterative scheme has demonstrated to accelerate the convergence rate in solving any system of linear equations generated by using approximation equations of boundary value problems. Based on the same scheme, the aim of this paper is to investigate the capability of a family of four-point block iterative methods with a weighted parameter, ω such as the 4 Point-EGSOR, 4 Point-EDGSOR, and 4 Point-MEGSOR in solving two-dimensional elliptic partial differential equations by using the second-order finite difference approximation. In fact, the formulation and implementation of three four-point block iterative methods are also presented. Finally, the experimental results show that the Four Point MEGSOR iterative scheme is superior as compared with the existing four point block schemes.

Keywords: MEG iteration, second-order finite difference, weighted parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
64 A Comparative Study of High Order Rotated Group Iterative Schemes on Helmholtz Equation

Authors: Norhashidah Hj. Mohd Ali, Teng Wai Ping

Abstract:

In this paper, we present a high order group explicit method in solving the two dimensional Helmholtz equation. The presented method is derived from a nine-point fourth order finite difference approximation formula obtained from a 45-degree rotation of the standard grid which makes it possible for the construction of iterative procedure with reduced complexity. The developed method will be compared with the existing group iterative schemes available in literature in terms of computational time, iteration counts, and computational complexity. The comparative performances of the methods will be discussed and reported.

Keywords: Explicit group method, finite difference, Helmholtz equation, rotated grid, standard grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166