

Abstract—Many algorithms are available for sorting the

unordered elements. Most important of them are Bubble sort, Heap
sort, Insertion sort and Shell sort. These algorithms have their own
pros and cons. Shell Sort which is an enhanced version of insertion
sort, reduces the number of swaps of the elements being sorted to
minimize the complexity and time as compared to insertion sort.
Shell sort improves the efficiency of insertion sort by quickly shifting
values to their destination. Average sort time is O(n1.25), while worst-
case time is O(n1.5). It performs certain iterations. In each iteration it
swaps some elements of the array in such a way that in last iteration
when the value of h is one, the number of swaps will be reduced.
Donald L. Shell invented a formula to calculate the value of ‘h’. this
work focuses to identify some improvement in the conventional Shell
sort algorithm. “Enhanced Shell Sort algorithm” is an improvement
in the algorithm to calculate the value of ‘h’. It has been observed
that by applying this algorithm, number of swaps can be reduced up
to 60 percent as compared to the existing algorithm. In some other
cases this enhancement was found faster than the existing algorithms
available.

Keywords—Algorithm, Computation, Shell, Sorting.

I. INTRODUCTION
ORTING has been a profound area for the algorithmic
researchers. And many resources are invested to suggest a

more working sorting algorithm. For this purpose many
existing sorting algorithms were observed in terms of the
efficiency of the algorithmic complexity. Shell sort and
insertion sort algorithms were observed to be both economical
and efficient [1,2]

The comparison of “Enhanced Shell sort” with Insertion
sort and Shell sort is made. In Shell sort the numbers of swaps
are reduced as compared to Insertion sort and in “Enhanced
Shell Sort” the numbers of swaps are further reduced as
compared to Shell sort.

A. Insertion Sort
The insertion sort, as its name suggests, inserts each item

into its proper place in the final list. The simplest
implementation of this requires two list structures: the source
list and the list into which sorted items are inserted. To save

Manuscript received October 9, 2001.
Basit Shahzad is senior Lecturer at the COMSATS Institute of Information

Technology, Islamabad-Pakistan where he is working the software and
algorithms research group. He has published several research papers and has
keen interest in the area of algorithms (e-mail:
Basit_shahzad@comsats.edu.pk).

Tanvir Afzal is undertaking his PhD research in the Institute of Information
Systems and Computer Media at the Graz University of Technology, Austria
(e-mail: mafzal@iicm.edu).

memory, most implementations use an in-place sort that works
by moving the current item past the already sorted items and
repeatedly swapping it with the preceding item until it is in
place.

Like the bubble sort, the insertion sort has a complexity of
O(n2). Although it has the same complexity, the insertion sort
is a little over twice as efficient as the bubble sort.

In the following example, it is calculated that how many
swaps are required in Insertion sort. Following is the list of 38
elements the Insertion sort algorithm is applied, in order to see
that how much swaps are required for this algorithm to bring
the elements in order.

20,10,51,92,25,57,48,37,12,86,33,1,113,1,2,228,27,82,60,
100,12,52,3,1,85,65,14,41,71,17,25,62,14,2,0,83,49,32

When Insertion Sort was applied on the given array then
number of swaps calculated for it are 367.

B. Shell Sort
The first diminishing increment sort. On each pass, ‘i’ sets

of n/i items are sorted, typically with insertion sort. On each
succeeding pass, i is reduced until it is 1 for the last pass. A
good series of i values is important to efficiency [1].

Invented by Donald Shell in 1959, the shell sort is the most
efficient of the O(n2) class of sorting algorithms [4]. Of
course, the shell sort is also the most complex of the O(n2)
algorithms.

The shell sort is a "diminishing increment sort", better
known as a "comb sort" to the unwashed programming
masses. The algorithm makes multiple passes through the list,
and each time sorts a number of equally sized sets using the
insertion sort [5]. The size of the set to be sorted gets larger
with each pass through the list, until the set consists of the
entire list. (Note that as the size of the set increases, the
number of sets to be sorted decreases.) This sets the insertion
sort up for an almost-best case run each iteration with a
complexity that approaches O(n) [9,10].

The items contained in each set are not contiguous, rather ,
if there are i sets then a set is composed of every i-th element.
For example, if there are 3 sets then the first set would contain
the elements located at positions 1, 4, 7 and so on. The second
set would contain the elements located at positions 2, 5, 8, and
so on; while the third set would contain the items located at
positions 3, 6, 9, and so on.[6]

The size of the sets used for each iteration has a major
impact on the efficiency of the sort. The algorithm provides
efficient execution for medium-size lists.
Along with the benefit of being robust, the algorithm is
considered to be somewhat complex and not nearly as

Enhanced Shell Sorting Algorithm
Basit Shahzad, and Muhammad Tanvir Afzal

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007

528International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

45
9.

pd
f

efficient as the merge, heap, and quick sorts are [2].
It has been observed that Shell sort is a non-stable in-place

sort. Shell sort improves on the efficiency of insertion sort by
quickly shifting values to their destination. Average sort time
is O(n1.25), while worst-case time is O(n1.5).

Various spacing may be used to implement the shell sort.
Typically, the array is sorted with large spacing, then the
spacing is reduced, and the array is sorted again. On the final
sort, spacing is one. Although the shell sort is easy to
comprehend, formal analysis is difficult. In particular, optimal
spacing values elude theoreticians. Knuth has experimented
with several values and recommends that spacing ‘h’ for an
array of size N be based on the following formula:

Let h1 = 1, hs+1 = 3hs + 1, and stop with ht when ht+2 ≥ N.
Thus, values of h are computed as follows:

h1 = 1
h2 = (3 x 1) + 1 = 4
h3 = (3 x 4) + 1 = 13
h4 = (3 x 13) + 1 = 40
h5 = (3 x 40) + 1 = 121
To sort 100 items we first find an ‘hs’ such that hs ≥ 100.

For 100 items, h5 is selected. The final value (ht) is two steps
lower, or h3. Therefore sequence for the values of ‘h’ will be
13-4-1. Once the initial ‘h’ value has been determined,
subsequent values may be calculated using the formula

hs-1 = floor(hs / 3).
Let’s calculate the number of swaps for the same problem

by using Shell sort as discussed in Insertion sort.
20,10,51,92,25,57,48,37,12,86,33,1,113,1,2,228,27,82,60,
100,12,52,3,1,85,65,14,41,71,17, 25,62,14,2,0,83,49,32
The algorithmic implementation showed that the series of

‘h’ is {4,1}, and the swaps required for the above values
under Shell sort algorithm are 170.

C. Enhanced Shell Sort Algorithm
Enhanced Shell Sort algorithm works in the same way as

existing Shell Sort algorithm. Calculating the value of ‘h’ is a
key step in the execution of shell sort. The value of ‘h’ in
conventional shell sort is determined by the formula:

Let h1 = 1, hs+1 = 3hs + 1, and stop with ht when ht+2 ≥ N.
By using this existing formula the shell sort algorithm

reduces the number of swaps up to 50 % as compared to that
of Insertion Sort.

Enhanced Shell Sort algorithm focuses to improve the
efficiency of the existing algorithm .Efficiency in the existing
algorithm can be improved by choosing the appropriate values
of ‘h’. Selection of the proper value of ‘h’ is a key point to
make it more efficient. Because before comparing all elements
of array with each other, it sounds good to arrange elements to
some extent so that when the spacing factor is ‘1’ the number
of swaps could be reduced maximally [7,8].

Enhance Shell Sort introduces a new mechanism for
calculating the value of h. The formula is given below to
calculate the first spacing for ‘h’.

H= Ceil (n/2).,n is the total number of elements in the array.
To calculate the next values of h the following formula is

used.
Hs-1=Ceil (hs/2)
For example for 100 elements of array the proposed values

of ‘h’ will be
{50, 25, 13, 7, 4, 2, 1}
But the values of ‘h’ for standard shell sort algorithm for

the same 100 elements are.
{13,4,1}
Now let’s take the same example as discussed in Insertion

sort and Shell sort to calculate the number of swaps in
Enhanced Shell sort algorithm.

20,10,51,92,25,57,48,37,12,86,33,1,113,1,2,228,27,82,60,
100,12,52,3,1,85,65,14,41,71,17, 25,62,14,2,0,83,49,32

Numbers of elements are 38 and now the values of h for
Enhanced Shell Sort will be

{20, 10, 5, 3, 2, 1}
In this case, the numbers of swaps are only 85.

II. COMPARISON OF THREE TECHNIQUES
Now the comparison for the three techniques is made here

for the same problem.
TABLE I

COMPARISON

Insertion Sort Shell Sort Enhanced Shell Sort

367 170 85

It is apparent that Shell sort reduces the number of swaps

up to 50 % as compared to the number of swaps in Insertion
sort and Enhanced Shell Sort reduces the number of swaps
further up to 50 % as compared to the number of swaps in
Shell Sort, thus improving the efficiency of the algorithm.

0

50

100

150

200

250

300

350

400

Sorting Techniques

Insertion Sort

Shell Sort

Enhanced Shell
Sort

Fig. 1 Comparison of Sorting Techniques

III. DETAIL DISCUSSION OF RESULTS
It is needful that the comparison of execution in terms of

numbers of swaps required for each algorithm are made on a
wider variety of data, in order to ensure and establish results
concretely.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007

529International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

45
9.

pd
f

A. For 10 Elements
100,37,12,86,2,127,62,14,3,9
Number of swaps in Insertion sort 30
Number of Swaps in Shell sort 30
Number of swaps in Enhanced Shell sort 12.

B. For 25 Elements
100,37,12,86,2,127,62,14,3,9,30,14,90,1,20,30,74,48,37,40,
7,101,200
Number of swaps in Insertion sort 111
Number of Swaps in Shell sort 47
Number of swaps in Enhanced Shell sort 31.

C. For 35 Elements
1,2,23,12,25,7,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,
90,1,20,30,74,48,37,40,7,101,200,4,9
Number of swaps in Insertion sort 225
Number of Swaps in Shell sort 109
Number of swaps in Enhanced Shell sort 56.

D. For 65 Elements
12,86,2,127,62,14,3,9,30,14,90,1,20,30,74,48,14,3,9,30,14,
90,1,20,30,74,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,
37,12,86,2,127,62,14,3,9,30,14,90,1,20,30,74,48,37,40,7,10
1,200,4,9
Number of swaps in Insertion sort 917
Number of Swaps in Shell sort 202
Number of swaps in Enhanced Shell sort 105.

E. For 100 Elements
1,41,14,85,2,10,52,63,1,2,23,12,25,7,9,5,36,1,100,37,12,86,
2,127,62,14,3,9,30,14,90,1,20,30,74,48,14,3,9,30,14,90,1,
20,30,74,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,90,10
,52,63,1,2,23,12,25,7,9,5,36,1,100,37,12,86,2,127,62,14,3,9
,30,14,90,1,20,30,74,48,37,40,7,101,200,4,9
Number of swaps in Insertion sort 2181
Number of Swaps in Shell sort 756
Number of swaps in Enhanced Shell sort 239

F. For 200 Elements
1,41,14,85,2,10,52,63,1,2,23,12,25,7,9,5,36,1,100,37,12,86,
2,127,62,14,3,9,30,14,90,1,20,30,74,48,14,3,9,30,14,90,1,2
0,30,74,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,90,10,
52,63,1,2,23,12,25,7,9,5,36,1,100,37,12,86,2,127,62,14,3,9,
30,14,90,1,00,37,12,86,2,127,62,14,3,9,20,30,74,48,37,40,7
,101,200,4,900,37,12,86,2,127,62,14,3,9,30,14,90,1,20,30,
74,48,37,40,7,101,200,12,86,2,127,62,14,3,9,30,14,90,1,20,
30,74,48,14,3,9,30,14,90,1,20,30,74,9,5,36,1,100,37,12,86,
2,127,62,14,3,9,30,14,37,12,86,2,127,62,14,3,9,30,14,90,1,
20,30,74,48,37,40,7,101,200,4,9
Number of swaps in Insertion sort 4200
Number of Swaps in Shell sort 1541
Number of swaps in Enhanced Shell sort 471.

G. For 300 Elements
25,7,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,90,1,20,
30,74,48,30,14,90,1,20,30,74,9,5,36,1,100,37,12,86,2,127,
62,14,3,9,30,14,90,10,52,63,1,2,23,12,25,7,9,5,36,1,100,37,
12,86,2,127,62,14,3,9,30,14,90,1,20,30,74,48,37,40,7,101,
200,4,9,14,3,9,30,14,90,1,20,30,74,9,5,36,1,100,37,1,41,14,
85,2,10,52,63,1,2,23,12,25,7,9,5,36,1,100,37,12,86,2,127,6
2,14,3,9,30,14,90,1,20,30,74,48,14,3,9,30,14,90,1,20,30,74,
9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,90,10,52,63,1,
2,23,12,25,7,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,
90,1,20,30,74,48,37,40,7,101,200,4,9,14,3,9,30,14,90,1,20,
30,74,48,30,14,90,1,20,30,74,9,5,36,1,100,37,12,86,2,127,
62,14,3,9,30,14,90,10,52,63,1,2,23,12,25,7,9,5,36,1,100,37,
12,86,25,7,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,90,
1,20,30,74,48,30,14,90,1,20,30,74,9,5,36,1,100,37,12,86,2,
127,62,14,3,9,30,14,90,10,52,63
Number of swaps in Insertion sort 21144
Number of Swaps in Shell sort 1503
Number of swaps in Enhanced Shell sort 928.

H. For500 Elements
25,7,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,90,1,20,
30,74,48,30,14,90,1,20,30,74,9,5,36,1,100,37,12,86,2,127,
62,14,3,9,30,14,90,10,52,63,1,2,23,12,25,7,9,5,36,1,100,37,
12,86,2,127,62,14,3,9,30,14,90,1,20,30,74,48,37,40,7,101,
200,4,9,14,3,9,30,14,90,1,20,30,74,9,5,36,1,100,37,1,41,14,
85,2,10,52,63,1,2,23,12,25,7,9,5,36,1,100,37,12,86,2,127,6
2,14,3,9,30,14,90,1,20,30,74,48,14,3,9,30,14,90,1,20,30,74,
9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,90,10,52,63,1,
2,23,12,25,7,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,
90,1,20,30,74,48,37,40,7,101,200,4,9,14,3,9,30,14,90,1,20,
30,74,48,30,14,90,1,20,30,74,9,5,36,1,100,37,12,86,2,127,
62,14,3,9,30,14,90,10,52,63,1,2,23,12,25,7,9,5,36,1,100,37,
12,86,25,7,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,90,
1,20,30,74,48,30,14,90,1,20,30,74,9,5,36,1,100,37,12,86,2,
127,62,14,3,9,30,14,90,10,52,63,1,41,14,85,2,10,52,63,1,2,
23,12,25,7,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,90,
1,20,30,74,48,14,3,9,30,14,90,1,20,30,74,9,5,36,1,100,37,
12,86,2,127,62,14,3,9,30,14,90,10,52,63,1,2,23,12,25,7,9,
5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,90,1,20,30,74,48
,37,40,7,101,200,4,9,1,2,23,12,25,7,9,5,36,1,100,37,12,86,2
, 127,62,14,3,9,30,14,90,1,20,30,74,48,37,40,7,101,200,4,9,
12,86,2,127,62,14,3,9,30,14,90,1,20,30,74,48,14,3,9,30,14,
90,1,20,30,74,9,5,36,1,100,37,12,86,2,127,62,14,3,9,30,14,
37,12,86,2,127,62,14,3,9,30,14,90,1,20,30,74,48,37,40,7,10
1,200,4,9

Number of swaps in Insertion sort 35144
Number of Swaps in Shell sort 2703
Number of swaps in Enhanced Shell sort1781.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007

530International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

45
9.

pd
f

TABLE II
COMPARISON OF INSERTION, SHELL AND ENHANCED SHELL SORT

CASES Insertion Shell Enhanced Shell Sort

A 30 30 12
B 111 47 31
C 225 109 56
D 917 202 105
E 2181 756 239
F 4200 1541 471
G 21144 1803 928
H 35144 2703 1781

0

500

1000

1500

2000

2500

a b c d e

Cases

Insertion Sort Shell Sort
Enhanced Shell Sort

Fig. 2 Comparison Graph

The enhanced shell sorting algorithm is a key towards

achieving the excellence in the algorithms to provide the
efficient solutions. This has been done by decreasing the
swaps required to sort the array of numbers, considerably.

The results show that the new algorithm provides a much
efficient way to sort the data and hence causes to save the
computational resources. It has been observed that the
enhanced shell sorting algorithm can solve the problem in
almost 20 times less swaps as compared to insertion sort and
in almost half swaps as compared to the shell sorting
algorithm. Fig. 3 shows the detailed overview of the number
of swaps required to sort different number of elements.

0

5000

10000

15000

20000

25000

30000

35000

40000

100 200 300 400 500

Number of Elements

N
um

be
r o

f S
w

ap
s

Insertion
Sort
Shell Sort

Enhanced
Shell Sort

Fig. 3 Elements-Swap Ratio

IV. DISCUSSION
Robert Sedgewick in his paper[11] opens discussion for the

performance issues of the Shell sort algorithm and claims that
finding a sequence that leads to running times 25% lower than
the best known certainly would be of practical interest,
Running time can be reduced with the reduction in number of
comparisons for the algorithm. We have reduced the number
of comparisons up to 60% in some ideal cases but in many
cases up to 20%. We executed three algorithms (Insertion sort,
Shell sort and Enhanced Shell sort) on same set of data and
found some interesting results as can be seen in the
comparisons of the algorithms for different cases in Figure 2.
The performance of this algorithm would be investigated in
future for N= 104 or 106. But its performance has been proved
for N= 103 that is useful in normal cases. Some attempts in the
past [12][13][14] have shown great concerns about
performance. Marcin Ciura [12] shows the results for 128
elements where the data was in sorted form after taking
535.71 swaps but in our case 200 elements have gone through
the sorting process from only 471 swaps. These are the
standard swaps for 200 elements in our case. They do not
change with the change in data but the number of comparisons
may vary in certain cases. But overall performance remains
better than available performance enhancements techniques.

V. CONCLUSION
This work focuses to provide an enhancement in existing

algorithm. Shell sort algorithm gives an average number of
comparisons but produces a problem that it does not give least
number of swaps. It has been observed that number of swaps
produced by Shell Sort can be further reduced. The motivation
for reducing the number of swaps is to economically and
effectively use the computational resources that are available
in terms of processor speed, memory and storage.

Enhanced shell sort algorithm provides a powerful solution

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007

531International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

45
9.

pd
f

to decrease the number of comparisons as well as number of
swaps to a minimum level in shortest possible time, thus
decreasing the CPU execution time as well as saving the
system memory.

Enhanced shell sort algorithm offers least number of swaps
on any size of data. The efficiency and working of this
algorithm improves as the size of data grows.

This algorithm has clearly stated simple and easy formula
that calculates the values of ‘h’ in shorter possible time than
shell sort algorithm, regardless of number of elements in an
array.

This algorithm improves the performance of the existing
algorithms up to 60% in some cases. However, in other cases
it produced better results in terms of reducing the number of
swaps than the existing algorithms. Comparison with existing
algorithms is given in the discussion section.

It has been observed that investing on the computer
hardware has less significance as compared to investment on
the improvement of algorithms in order to improve efficiency.
The improved shell sorting algorithms ensure that the number
of swaps are reduced in this case and hence provide an
efficient way of execution resulting in less computing
resources and quick execution.

ACKNOWLEDGMENT
I feel it my principal obligation to thank all my friends who

helped me in identifying the need to work in this area. I am
also thankful to all those who appreciated this work and
provided me a boost to think and to work more effectively in
this area of sorting.

REFERENCES
[1] http://www.nist.gov/dada/html/shellsort.htm
[2] http://linux.wku.edu/~lamonml/algor/sort/shell.html
[3] http://oopweb.com/Algorithms/Documents/Sman/VolumeFrames.html?/

Algorithms/Documents/Sman/Volume/ShellSort_files/s_shl.htm
[4] Yedidyah Langsam, Moshe J. Augenstan, Aadrew M. Tenenbaum, “Data

Structures using C and C++” , 2nd ed, Pearson Education, pp360-366
[5] Larry Nyhoff, “An introduction to Data Structures”,2nd ed, pp: 581-585
[6] linux.wku.edu/~lamonml/algor/sort/sort.html
[7] www.cs.hope.edu/alganim/ccaa/shellsort.html
[8] www.inf.fhflensburg.de/lang/algorithmen/sortieren/shell/shellen.htm
[9] www.math.grin.edu/~stone/events/scheme-workshop/shellsort.html
[10] www.cs.odu.edu/~zeil/cs361/Lectures-f02/06sorting/shell/shell.html
[11] Robert Sedgewick, “Analysis of Shellsort and Related Algorithms”,

Proceedings of the Fourth Annual European Symposium on
Algorithms},1996, pp: 1-11

[12] Marcin Ciura “Best Increments for the Average Case of
Shellsort”,Proceedings of the 13th International Symposium on
Fundamentals of Computation Theory,2001, pp: 106—117

[13] Jiang, T., Li, M., Vit´anyi, P.: The average-case complexity of Shellsort.
Lecture Notes in Computer Science 1644 (1999), 453–462.

[14] Janson, S., Knuth, D. E.: Shellsort with three increments. Random
Structures and Algorithms 10 (1997), 125–142.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:3, 2007

532International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

3,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

45
9.

pd
f

