Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
A Review of Methods for 2D/3D Registration
Authors: Panos D. Kotsas, Tony Dodd
Abstract:
2D/3D registration is a special case of medical image registration which is of particular interest to surgeons. Applications of 2D/3D registration are [1] radiotherapy planning and treatment verification, spinal surgery, hip replacement, neurointerventions and aortic stenting. The purpose of this paper is to provide a literature review of the main methods for image registration for the 2D/3D case. At the end of the paper an algorithm is proposed for 2D/3D registration based on the Chebyssev polynomials iteration loop.Keywords: Medical image registration, review, 2D/3D
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1330319
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2951References:
[1] E.B. van de Kraats, G.P.Penney, D. Tomazevic, T van Walsum, and W.J. Niessen, "Standardized evaluation methodology for 2D-3D registration", IEEE Trans. Med. Imag. , vol. 24, no. 9, pp. 1177-1189, Sep. 2005.
[2] A. Guéziec, P. Kazanzides, B. Williamson, and R. H. Taylor,"Anatomybased registration of CT-scan and intraoperative Xrayimages for guiding a surgical robot," IEEE Trans. Med. Imag., vol. 17,pp. 715-728, Oct. 1998.
[3] D. Tomazevic, B. Likar, T. Slivnik, and F. Pernus, "3-D/2-D registration of CT and MR to X-ray images," IEEE Trans. Med. Imag., vol. 22, no. 11, pp. 1407-1416, Nov. 2003.
[4] G. P. Penney, P. G. Batchelor, D. L. G. Hill, D. J. Hawkes, and J.Weese,"Validation of a two- to three-dimensional registration algorithm for aligning preoperative CT images and intraoperative fluoroscopyimages," Med. Phys., vol. 28, no. 6, pp. 1024-1032, 2001.
[5] D. B. Russakoff, T. Rohlfing, A. Ho, D. H. Kim, R. Shahidi, J. R. AdlerJr., and C. R. Maurer Jr. et al., "Evaluation of intensity-based 2D- 3D spine image registration using clinical gold-standard data," in Lecture Notes in Computer Science, J. C. Gee et al., Eds. Berlin, Germany: Springer-Verlag, 2003, vol. 2717, WBIR 2003, pp. 151-160.
[6] M. Vermandel, N. Betrouni, G. Palos, J. Y. Gauvrit, C. Vasseur, and J. Rousseau, "Registration, matching, and data fusion in 2D/3D medical imaging: Application to DSA and MRA," in Lecture Notes in Computer Science, R. Ellis and T. Peters, Eds: Springer-Verlag, 2003, vol. 2878, Medical Image Computing and Computer Assisted Intervention - MICCAI 2003, pp. 778-785.
[7] J. V. Byrne, C. Colomina, J. Hipwell, T. Cox, J. A. Noble, G. P. Penney, and D. J. Hawkes, "An assessment of a technique for 2D-3D registration of cerebral intra-arterial angiography," Br. J. Radiol., vol. 77, no. 914, pp. 123-128, 2004.
[8] S. A. M. Baert, G. P. Penney, T. van Walsum, and W. J. Niessen, "Precalibration versus 2D-3D registration for 3D guide wire display in endovascular interventions," in Lecture Notes in Computer Science, C. Barillot, D. Haynor, and P. Hellier, Eds. New York: Springer, 2004, pt. 2, vol. 3217, Medical Image Computing and Computer-Assisted Intervention- MICCAI 2004, pp. 577-584.
[9] R. A. McLaughlin, J. Hipwell, D. J. Hawkes, J. A. Noble, J. V. Byrne,and T. Cox, "A comparison of 2D-3D intensity-based registration and feature-based registration for neurointerventions," in Lecture Notes in Computer Science, T. Dohi and R. Kikinis, Eds: Springer, 2002, pt. 2, vol. 2489, Medical Image Computing and Computer-Assisted Intervention- MICCAI 2002, pp. 517-524.
[10] Y. Masutani, T. Dohi, F. Yamane, H. Iseki, and K. Takakura, "Interactive virtualized display system for intravascular neurosurgery," in Lecture Notes in Computer Science, J. Troccaz, W. Grimson, and R. Mösges, Eds: Springer, 1997, vol. 1205, CVRMed-MRCAS -97, pp. 427-435.
[11] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D.J. Hawkes, "A comparison of similarity measures for use in 2-D-3-D medical image registration," IEEE Trans. Med. Imag., vol. 17, no. 4, pp.586-595, Apr. 1998.
[12] J. H. Hipwell, G. P. Penney, R. A. McLaughlin, K. Rhode, P. Summers,T. C. Cox, J. V. Byrne, J. A. Noble, and D. J. Hawkes, "Intensity-based 2-D-3-D registration of cerebral angiograms," IEEE Trans. Med. Imag., vol. 22, no. 11, pp. 1417-1426, Nov. 2003.
[13] B. Zitova, J. Flusser, "Image registration methods: a survey", Image and Vision Computing, 21 (2003), pp 977-1000.
[14] J.Weese, G. P. Penney, P. Desmedt, T. M. Buzug, D. L. G. Hill, and D. J. Hawkes, "Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans for image-guided surgery," IEEE Trans. Inf. Technol. Biomed., vol. 1, no. 4, pp. 284-293, Dec 1997.
[15] H. Livyatan, Z. Yaniv, and L. Joskowicz, "Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT," IEEE Trans. Med. Imag., vol. 22, no. 11, pp. 1395-1406, Nov. 2003.
[16] J. Feldmar, N. Ayache, and F. Betting, "3D-2D projective registration of free-form curves and surfaces," Comput. Vis. Image Understanding, vol.65, no. 3, pp. 403-424, 1997.
[17] Y. Kita, D. L. Wilson, and J. A. Noble, "Real-time registration of 3D cerebral vessels to X-ray angiograms," in Lecture Notes in Computer Science, W. M. Wells, A. Colchester, and S. Delp, Eds. New York:Springer, 1998, vol. 1496, Medical Image Computing and Computer-Assisted Intervention (MICCAI 98), pp. 1125-1133.
[18] S. Lavallée and R. Szeliski, "Recovering the position and orientation of free-form objects from image contours using 3D distance maps," IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 4, pp. 378-390, Apr. 1995.
[8] M. J. Murphy, "An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery," Med. Phys., vol. 24, no. 6, pp. 857-866, 1997.
[19] D.Marsh, "Applied geometry for computer graphics and CAD", Second Edition, Springer(2005).