Search results for: interpolation methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4066

Search results for: interpolation methods

4036 Symbolic Analysis of Large Circuits Using Discrete Wavelet Transform

Authors: Ali Al-Ataby , Fawzi Al-Naima

Abstract:

Symbolic Circuit Analysis (SCA) is a technique used to generate the symbolic expression of a network. It has become a well-established technique in circuit analysis and design. The symbolic expression of networks offers excellent way to perform frequency response analysis, sensitivity computation, stability measurements, performance optimization, and fault diagnosis. Many approaches have been proposed in the area of SCA offering different features and capabilities. Numerical Interpolation methods are very common in this context, especially by using the Fast Fourier Transform (FFT). The aim of this paper is to present a method for SCA that depends on the use of Wavelet Transform (WT) as a mathematical tool to generate the symbolic expression for large circuits with minimizing the analysis time by reducing the number of computations.

Keywords: Numerical Interpolation, Sparse Matrices, SymbolicAnalysis, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
4035 Implicit Two Step Continuous Hybrid Block Methods with Four Off-Steps Points for Solving Stiff Ordinary Differential Equation

Authors: O. A. Akinfenwa, N.M. Yao, S. N. Jator

Abstract:

In this paper, a self starting two step continuous block hybrid formulae (CBHF) with four Off-step points is developed using collocation and interpolation procedures. The CBHF is then used to produce multiple numerical integrators which are of uniform order and are assembled into a single block matrix equation. These equations are simultaneously applied to provide the approximate solution for the stiff ordinary differential equations. The order of accuracy and stability of the block method is discussed and its accuracy is established numerically.

Keywords: Collocation and Interpolation, Continuous HybridBlock Formulae, Off-Step Points, Stability, Stiff ODEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
4034 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals does not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

Keywords: Level crossing sampling, numerical stability, speech processing, trigonometric polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 370
4033 CT Reconstruction from a Limited Number of X-Ray Projections

Authors: Tao Quang Bang, Insu Jeon

Abstract:

Most CT reconstruction system x-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. A large number of X-ray projections are needed to reconstruct CT images, so the collection and calculation of the projection data consume too much time and harmful for patient. For the purpose of solving the problem, in this study, we proposed a method for tomographic reconstruction of a sample from a limited number of x-ray projections by using linear interpolation method. In simulation, we presented reconstruction from an experimental x-ray CT scan of a Aluminum phantom that follows to two steps: X-ray projections will be interpolated using linear interpolation method and using it for CT reconstruction based upon Ordered Subsets Expectation Maximization (OSEM) method.

Keywords: CT reconstruction, X-ray projections, Interpolation technique, OSEM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
4032 A Novel Deinterlacing Algorithm Based on Adaptive Polynomial Interpolation

Authors: Seung-Won Jung, Hye-Soo Kim, Le Thanh Ha, Seung-Jin Baek, Sung-Jea Ko

Abstract:

In this paper, a novel deinterlacing algorithm is proposed. The proposed algorithm approximates the distribution of the luminance into a polynomial function. Instead of using one polynomial function for all pixels, different polynomial functions are used for the uniform, texture, and directional edge regions. The function coefficients for each region are computed by matrix multiplications. Experimental results demonstrate that the proposed method performs better than the conventional algorithms.

Keywords: Deinterlacing, polynomial interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
4031 Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation

Authors: Hanita Daud, Noorhana Yahya, Vijanth Sagayan, Muizuddin Talib

Abstract:

This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.

Keywords: Spline Interpolation, Mean Square Error, Sea Bed Logging, Controlled Source Electromagnetic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
4030 High Capacity Reversible Watermarking through Interpolated Error Shifting

Authors: Hae-Yeoun Lee

Abstract:

Reversible watermarking that not only protects the copyright but also preserve the original quality of the digital content have been intensively studied. In particular, the demand for reversible watermarking has increased. In this paper, we propose a reversible watermarking scheme based on interpolation-error shifting and error pre-compensation. The intensity of a pixel is interpolated from the intensities of neighboring pixels, and the difference histogram between the interpolated and the original intensities is obtained and modified to embed the watermark message. By restoring the difference histogram, the embedded watermark is extracted and the original image is recovered by compensating for the interpolation error. The overflow and underflow are prevented by error pre-compensation. To show the performance of the method, the proposed algorithm is compared with other methods using various test images.

Keywords: Reversible watermarking, High capacity, High quality, Interpolated error shifting, Error pre-compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
4029 Image Magnification Using Adaptive Interpolationby Pixel Level Data-Dependent Geometrical Shapes

Authors: Muhammad Sajjad, Naveed Khattak, Noman Jafri

Abstract:

World has entered in 21st century. The technology of computer graphics and digital cameras is prevalent. High resolution display and printer are available. Therefore high resolution images are needed in order to produce high quality display images and high quality prints. However, since high resolution images are not usually provided, there is a need to magnify the original images. One common difficulty in the previous magnification techniques is that of preserving details, i.e. edges and at the same time smoothing the data for not introducing the spurious artefacts. A definitive solution to this is still an open issue. In this paper an image magnification using adaptive interpolation by pixel level data-dependent geometrical shapes is proposed that tries to take into account information about the edges (sharp luminance variations) and smoothness of the image. It calculate threshold, classify interpolation region in the form of geometrical shapes and then assign suitable values inside interpolation region to the undefined pixels while preserving the sharp luminance variations and smoothness at the same time. The results of proposed technique has been compared qualitatively and quantitatively with five other techniques. In which the qualitative results show that the proposed method beats completely the Nearest Neighbouring (NN), bilinear(BL) and bicubic(BC) interpolation. The quantitative results are competitive and consistent with NN, BL, BC and others.

Keywords: Adaptive, digital image processing, imagemagnification, interpolation, geometrical shapes, qualitative &quantitative analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
4028 Single Frame Supercompression of Still Images,Video, High Definition TV and Digital Cinema

Authors: Mario Mastriani

Abstract:

Super-resolution is nowadays used for a high-resolution image produced from several low-resolution noisy frames. In this work, we consider the problem of high-quality interpolation of a single noise-free image. Such images may come from different sources, i.e., they may be frames of videos, individual pictures, etc. On the other hand, in the encoder we apply a downsampling via bidimen-sional interpolation of each frame, and in the decoder we apply a upsampling by which we restore the original size of the image. If the compression ratio is very high, then we use a convolutive mask that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. In fact, the mentioned mask is coded inside texture memory of a GPGPU.

Keywords: General-Purpose computation on Graphics ProcessingUnits, Image Compression, Interpolation, Super-resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
4027 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: Interpolation, Approximate Solution, Collocation, Differential system, Half step, Converges, Block method, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296
4026 Generating Arabic Fonts Using Rational Cubic Ball Functions

Authors: Fakharuddin Ibrahim, Jamaludin Md. Ali, Ahmad Ramli

Abstract:

In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G1 continuity. The conditions considered are known as the G1 Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity.

Keywords: Continuity, data interpolation, Hermite condition, rational Ball curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
4025 Interpolation Issue in PVNPG-14M Application for Technical Control of Artillery Fire

Authors: Martin Blaha, Ladislav Potužák, Daniel Holesz

Abstract:

This paper focused on application support for technical control of artillery units – PVNPG-14M, especially on interpolation issue. Artillery units of the Army of the Czech Republic, reflecting the current global security neighborhood, can be used outside the Czech Republic. The paper presents principles, evolution and calculation in the process of complete preparation. The paper presents expertise using of application of current artillery communication and information system and suggests the perspective future system. The paper also presents problems in process of complete preparing of fire especially problems in permanently information (firing table) and calculated values. The paper presents problems of current artillery communication and information system and suggests requirements of the future system.

Keywords: Fire for effect, application, fire control, interpolation method, software development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108
4024 Development of Integrated GIS Interface for Characteristics of Regional Daily Flow

Authors: Ju Young Lee, Jung-Seok Yang, Jaeyoung Choi

Abstract:

The purpose of this paper primarily intends to develop GIS interface for estimating sequences of stream-flows at ungauged stations based on known flows at gauged stations. The integrated GIS interface is composed of three major steps. The first, precipitation characteristics using statistical analysis is the procedure for making multiple linear regression equation to get the long term mean daily flow at ungauged stations. The independent variables in regression equation are mean daily flow and drainage area. Traditionally, mean flow data are generated by using Thissen polygon method. However, method for obtaining mean flow data can be selected by user such as Kriging, IDW (Inverse Distance Weighted), Spline methods as well as other traditional methods. At the second, flow duration curve (FDC) is computing at unguaged station by FDCs in gauged stations. Finally, the mean annual daily flow is computed by spatial interpolation algorithm. The third step is to obtain watershed/topographic characteristics. They are the most important factors which govern stream-flows. In summary, the simulated daily flow time series are compared with observed times series. The results using integrated GIS interface are closely similar and are well fitted each other. Also, the relationship between the topographic/watershed characteristics and stream flow time series is highly correlated.

Keywords: Integrated GIS interface, spatial interpolation algorithm, FDC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
4023 Enhancement of Stereo Video Pairs Using SDNs To Aid In 3D Reconstruction

Authors: Lewis E. Hibell, Honghai Liu, David J. Brown

Abstract:

This paper presents the results of enhancing images from a left and right stereo pair in order to increase the resolution of a 3D representation of a scene generated from that same pair. A new neural network structure known as a Self Delaying Dynamic Network (SDN) has been used to perform the enhancement. The advantage of SDNs over existing techniques such as bicubic interpolation is their ability to cope with motion and noise effects. SDNs are used to generate two high resolution images, one based on frames taken from the left view of the subject, and one based on the frames from the right. This new high resolution stereo pair is then processed by a disparity map generator. The disparity map generated is compared to two other disparity maps generated from the same scene. The first is a map generated from an original high resolution stereo pair and the second is a map generated using a stereo pair which has been enhanced using bicubic interpolation. The maps generated using the SDN enhanced pairs match more closely the target maps. The addition of extra noise into the input images is less problematic for the SDN system which is still able to out perform bicubic interpolation.

Keywords: Genetic Evolution, Image Enhancement, Neuron Networks, Stereo Vision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
4022 Seven step Adams Type Block Method With Continuous Coefficient For Periodic Ordinary Differential Equation

Authors: Olusheye Akinfenwa

Abstract:

We consider the development of an eight order Adam-s type method, with A-stability property discussed by expressing them as a one-step method in higher dimension. This makes it suitable for solving variety of initial-value problems. The main method and additional methods are obtained from the same continuous scheme derived via interpolation and collocation procedures. The methods are then applied in block form as simultaneous numerical integrators over non-overlapping intervals. Numerical results obtained using the proposed block form reveals that it is highly competitive with existing methods in the literature.

Keywords: Block Adam's type Method; Periodic Ordinary Differential Equation; Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
4021 The Approximate Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind by Using Iterative Interpolation

Authors: N. Parandin, M. A. Fariborzi Araghi

Abstract:

in this paper, we propose a numerical method for the approximate solution of fuzzy Fredholm functional integral equations of the second kind by using an iterative interpolation. For this purpose, we convert the linear fuzzy Fredholm integral equations to a crisp linear system of integral equations. The proposed method is illustrated by some fuzzy integral equations in numerical examples.

Keywords: Fuzzy function integral equations, Iterative method, Linear systems, Parametric form of fuzzy number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
4020 Piecewise Interpolation Filter for Effective Processing of Large Signal Sets

Authors: Anatoli Torokhti, Stanley Miklavcic

Abstract:

Suppose KY and KX are large sets of observed and reference signals, respectively, each containing N signals. Is it possible to construct a filter F : KY → KX that requires a priori information only on few signals, p  N, from KX but performs better than the known filters based on a priori information on every reference signal from KX? It is shown that the positive answer is achievable under quite unrestrictive assumptions. The device behind the proposed method is based on a special extension of the piecewise linear interpolation technique to the case of random signal sets. The proposed technique provides a single filter to process any signal from the arbitrarily large signal set. The filter is determined in terms of pseudo-inverse matrices so that it always exists.

Keywords: Wiener filter, filtering of stochastic signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
4019 A Computationally Efficient Design for Prototype Filters of an M-Channel Cosine Modulated Filter Bank

Authors: Neela. R. Rayavarapu, Neelam Rup Prakash

Abstract:

The paper discusses a computationally efficient method for the design of prototype filters required for the implementation of an M-band cosine modulated filter bank. The prototype filter is formulated as an optimum interpolated FIR filter. The optimum interpolation factor requiring minimum number of multipliers is used. The model filter as well as the image suppressor will be designed using the Kaiser window. The method will seek to optimize a single parameter namely cutoff frequency to minimize the distortion in the overlapping passband.

Keywords: Cosine modulated filter bank, interpolated FIR filter, optimum interpolation factor, prototype filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
4018 Identifying Blind Spots in a Stereo View for Early Decisions in SI for Fusion based DMVC

Authors: H. Ali, K. Hameed, N. Khan

Abstract:

In DMVC, we have more than one options of sources available for construction of side information. The newer techniques make use of both the techniques simultaneously by constructing a bitmask that determines the source of every block or pixel of the side information. A lot of computation is done to determine each bit in the bitmask. In this paper, we have tried to define areas that can only be well predicted by temporal interpolation and not by multiview interpolation or synthesis. We predict that all such areas that are not covered by two cameras cannot be appropriately predicted by multiview synthesis and if we can identify such areas in the first place, we don-t need to go through the script of computations for all the pixels that lie in those areas. Moreover, this paper also defines a technique based on KLT to mark the above mentioned areas before any other processing is done on the side view.

Keywords: Side Information, Distributed Multiview Video Coding, Fusion, Early Decision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
4017 An Application of the Sinc-Collocation Method to a Three-Dimensional Oceanography Model

Authors: Y. Mohseniahouei, K. Abdella, M. Pollanen

Abstract:

In this paper, we explore the applicability of the Sinc- Collocation method to a three-dimensional (3D) oceanography model. The model describes a wind-driven current with depth-dependent eddy viscosity in the complex-velocity system. In general, the Sinc-based methods excel over other traditional numerical methods due to their exponentially decaying errors, rapid convergence and handling problems in the presence of singularities in end-points. Together with these advantages, the Sinc-Collocation approach that we utilize exploits first derivative interpolation, whose integration is much less sensitive to numerical errors. We bring up several model problems to prove the accuracy, stability, and computational efficiency of the method. The approximate solutions determined by the Sinc-Collocation technique are compared to exact solutions and those obtained by the Sinc-Galerkin approach in earlier studies. Our findings indicate that the Sinc-Collocation method outperforms other Sinc-based methods in past studies.

Keywords: Boundary Value Problems, Differential Equations, Sinc Numerical Methods, Wind-Driven Currents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
4016 Method of Finding Aerodynamic Characteristic Equations of Missile for Trajectory Simulation

Authors: Attapon Charoenpon, Ekkarach Pankeaw

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (╬¢ ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ╬¢ <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: Aerodynamic, Characteristic Equation, Angle ofAttack, Polynomial interpolation, Trajectories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3628
4015 Image Enhancement of Medical Images using Gabor Filter Bank on Hexagonal Sampled Grids

Authors: Veni.S , K.A.Narayanankutty

Abstract:

For about two decades scientists have been developing techniques for enhancing the quality of medical images using Fourier transform, DWT (Discrete wavelet transform),PDE model etc., Gabor wavelet on hexagonal sampled grid of the images is proposed in this work. This method has optimal approximation theoretic performances, for a good quality image. The computational cost is considerably low when compared to similar processing in the rectangular domain. As X-ray images contain light scattered pixels, instead of unique sigma, the parameter sigma of 0.5 to 3 is found to satisfy most of the image interpolation requirements in terms of high Peak Signal-to-Noise Ratio (PSNR) , lower Mean Squared Error (MSE) and better image quality by adopting windowing technique.

Keywords: Hexagonal lattices, Gabor filter, Interpolation, imageprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
4014 Shape Error Concealment for Shape Independent Transform Coding

Authors: Sandra Ondrušová, Jaroslav Polec

Abstract:

Arbitrarily shaped video objects are an important concept in modern video coding methods. The techniques presently used are not based on image elements but rather video objects having an arbitrary shape. In this paper, spatial shape error concealment techniques to be used for object-based image in error-prone environments are proposed. We consider a geometric shape representation consisting of the object boundary, which can be extracted from the α-plane. Three different approaches are used to replace a missing boundary segment: Bézier interpolation, Bézier approximation and NURBS approximation. Experimental results on object shape with different concealment difficulty demonstrate the performance of the proposed methods. Comparisons with proposed methods are also presented.

Keywords: error concealment, shape coding, object-based image, NURBS, Bézier curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
4013 Neuro-Fuzzy Networks for Identification of Mathematical Model Parameters of Geofield

Authors: A. Pashayev, R. Sadiqov, C. Ardil, F. Ildiz , H. Karabork

Abstract:

The new technology of fuzzy neural networks for identification of parameters for mathematical models of geofields is proposed and checked. The effectiveness of that soft computing technology is demonstrated, especially in the early stage of modeling, when the information is uncertain and limited.

Keywords: Identification, interpolation methods, neuro-fuzzy networks, geofield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
4012 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem

Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand

Abstract:

In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.

Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
4011 Efficient CT Image Volume Rendering for Diagnosis

Authors: HaeNa Lee, Sun K. Yoo

Abstract:

Volume rendering is widely used in medical CT image visualization. Applying 3D image visualization to diagnosis application can require accurate volume rendering with high resolution. Interpolation is important in medical image processing applications such as image compression or volume resampling. However, it can distort the original image data because of edge blurring or blocking effects when image enhancement procedures were applied. In this paper, we proposed adaptive tension control method exploiting gradient information to achieve high resolution medical image enhancement in volume visualization, where restored images are similar to original images as much as possible. The experimental results show that the proposed method can improve image quality associated with the adaptive tension control efficacy.

Keywords: Tension control, Interpolation, Ray-casting, Medical imaging analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
4010 MAP-Based Image Super-resolution Reconstruction

Authors: Xueting Liu, Daojin Song, Chuandai Dong, Hongkui Li

Abstract:

From a set of shifted, blurred, and decimated image , super-resolution image reconstruction can get a high-resolution image. So it has become an active research branch in the field of image restoration. In general, super-resolution image restoration is an ill-posed problem. Prior knowledge about the image can be combined to make the problem well-posed, which contributes to some regularization methods. In the regularization methods at present, however, regularization parameter was selected by experience in some cases and other techniques have too heavy computation cost for computing the parameter. In this paper, we construct a new super-resolution algorithm by transforming the solving of the System stem Є=An into the solving of the equations X+A*X-1A=I , and propose an inverse iterative method.

Keywords: High-resolution MAP image, Reconstruction, Image interpolation, Motion Estimation, Hermitian positive definite solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
4009 A Dynamic Equation for Downscaling Surface Air Temperature

Authors: Ch. Surawut, D. Sukawat

Abstract:

In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. This equation provides downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.

Keywords: Dynamic Equation, Downscaling, Inverse distance weight interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
4008 The Mass Attenuation Coefficients, Effective Atomic Cross Sections, Effective Atomic Numbers and Electron Densities of Some Halides

Authors: Shivalinge Gowda

Abstract:

The total mass attenuation coefficients m/r, of some halides such as, NaCl, KCl, CuCl, NaBr, KBr, RbCl, AgCl, NaI, KI, AgBr, CsI, HgCl2, CdI2 and HgI2 were determined at photon energies 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The mass attenuation coefficients and the effective atomic cross sections are found to be in good agreement with the XCOM values. From these mass attenuation coefficients, the effective atomic cross sections sa, of the compounds were determined. These effective atomic cross section sa data so obtained are then used to compute the effective atomic numbers Zeff. For this, the interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed by using the logarithmic regression analysis of the data measured by the authors and reported earlier for the above said energies along with XCOM data for standard energies. The best-fit coefficients in the photon energy range of 250 to 350 keV, 350 to 500 keV, 500 to 700 keV, 700 to 1000 keV and 1000 to 1500 keV by a piecewise interpolation method were then used to find the Zeff of the compounds with respect to the effective atomic cross section sa from the relation obtained by piece wise interpolation method. Using these Zeff values, the electron densities Nel of halides were also determined. The present Zeff and Nel values of halides are found to be in good agreement with the values calculated from XCOM data and other available published values.

Keywords: Mass attenuation coefficient, atomic cross-section, effective atomic number, electron density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
4007 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752