Search results for: Time varying frequency.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8215

Search results for: Time varying frequency.

8185 A Signal Driven Adaptive Resolution Short-Time Fourier Transform

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

The frequency contents of the non-stationary signals vary with time. For proper characterization of such signals, a smart time-frequency representation is necessary. Classically, the STFT (short-time Fourier transform) is employed for this purpose. Its limitation is the fixed timefrequency resolution. To overcome this drawback an enhanced STFT version is devised. It is based on the signal driven sampling scheme, which is named as the cross-level sampling. It can adapt the sampling frequency and the window function (length plus shape) by following the input signal local variations. This adaptation results into the proposed technique appealing features, which are the adaptive time-frequency resolution and the computational efficiency.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Resolution Analysis, Computational Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
8184 Signal Generator Circuit Carrying Information as Embedded Features from Multi-Transducer Signals

Authors: Sheroz Khan, Mustafa Zeki, Shihab Abdel Hameed, AHM Zahirul Alam, Aisha Hassan Abdalla, A. F. Salami, W. A. Lawal

Abstract:

A novel circuit for generating a signal embedded with features about data from three sensors is presented. This suggested circuit is making use of a resistance-to-time converter employing a bridge amplifier, an integrator and a comparator. The second resistive sensor (Rz) is transformed into duty cycle. Another bridge with varying resistor, (Ry) in the feedback of an OP AMP is added in series to change the amplitude of the resulting signal in a proportional relationship while keeping the same frequency and duty cycle representing proportional changes in resistors Rx and Rz already mentioned. The resultant output signal carries three types of information embedded as variations of its frequency, duty cycle and amplitude.

Keywords: Integrator, Comparator, Bridge Circuit, Resistanceto-Time Converter, Conditioning Circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
8183 Frequency-Energy Characteristics of Local Earthquakes using Discrete Wavelet Transform(DWT)

Authors: O. H. Colak, T. C. Destici, S. Ozen, H. Arman, O. Cerezci

Abstract:

The wavelet transform is one of the most important method used in signal processing. In this study, we have introduced frequency-energy characteristics of local earthquakes using discrete wavelet transform. Frequency-energy characteristic was analyzed depend on difference between P and S wave arrival time and noise within records. We have found that local earthquakes have similar characteristics. If frequency-energy characteristics can be found accurately, this gives us a hint to calculate P and S wave arrival time. It can be seen that wavelet transform provides successful approximation for this. In this study, 100 earthquakes with 500 records were analyzed approximately.

Keywords: Discrete Wavelet Transform, Frequency-EnergyCharacteristics, P and S waves arrival time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
8182 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay

Authors: Caigen Zhou, Haibo Jiang

Abstract:

The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.

Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
8181 An Improved Algorithm for Channel Estimations of OFDM System based Pilot Signal

Authors: Ahmed N. H. Alnuaimy, Mahamod Ismail, Mohd. A. M. Ali, Kasmiran Jumari, Ayman A. El-Saleh

Abstract:

This paper presents a new algorithm for the channel estimation of the OFDM system based on a pilot signal for the new generation of high data rate communication systems. In orthogonal frequency division multiplexing (OFDM) systems over fast-varying fading channels, channel estimation and tracking is generally carried out by transmitting known pilot symbols in given positions of the frequency-time grid. In this paper, we propose to derive an improved algorithm based on the calculation of the mean and the variance of the adjacent pilot signals for a specific distribution of the pilot signals in the OFDM frequency-time grid then calculating of the entire unknown channel coefficients from the equation of the mean and the variance. Simulation results shows that the performance of the OFDM system increase as the length of the channel increase where the accuracy of the estimated channel will be increased using this low complexity algorithm, also the number of the pilot signal needed to be inserted in the OFDM signal will be reduced which lead to increase in the throughput of the signal over the OFDM system in compared with other type of the distribution such as Comb type and Block type channel estimation.

Keywords: Channel estimation, orthogonal frequency divisionmultiplexing (OFDM), comb type channel estimation, block typechannel estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
8180 Signal Driven Sampling and Filtering a Promising Approach for Time Varying Signals Processing

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

The mobile systems are powered by batteries. Reducing the system power consumption is a key to increase its autonomy. It is known that mostly the systems are dealing with time varying signals. Thus, we aim to achieve power efficiency by smartly adapting the system processing activity in accordance with the input signal local characteristics. It is done by completely rethinking the processing chain, by adopting signal driven sampling and processing. In this context, a signal driven filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by analysing the input signal local variations. Thus, it correlates the processing activity with the signal variations. It leads towards a drastic computational gain of the proposed technique compared to the classical one.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Rate Filtering, Computational Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
8179 Volatility Switching between Two Regimes

Authors: Josip Visković, Josip Arnerić, Ante Rozga

Abstract:

Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models. When financial returns exhibit sudden jumps that are due to structural breaks, standard GARCH models show high volatility persistence, i.e. integrated behavior of the conditional variance. In such situations models in which the parameters are allowed to change over time are more appropriate. This paper compares different GARCH models in terms of their ability to describe structural changes in returns caused by financial crisis at stock markets of six selected central and east European countries. The empirical analysis demonstrates that Markov regime switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility when sudden switching occurs in response to financial crisis.

Keywords: Central and east European countries, financial crisis, Markov switching GARCH model, transition probabilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521
8178 A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies

Authors: X. Z. Gao, S. J. Ovaska, X. Wang

Abstract:

Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.

Keywords: Predictive filtering, fuzzy logic, sinusoidal signals, time-varying frequencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
8177 Switching Rule for the Exponential Stability and Stabilization of Switched Linear Systems with Interval Time-varying Delays

Authors: Kreangkri Ratchagit

Abstract:

This paper is concerned with exponential stability and stabilization of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton-s formula, a switching rule for the exponential stability and stabilization of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability and stabilization of the systems are first established in terms of LMIs. Numerical examples are included to illustrate the effectiveness of the results.

Keywords: Switching design, exponential stability and stabilization, switched linear systems, interval delay, Lyapunov function, linear matrix inequalities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
8176 Improved Simultaneous Performance in the Time Domain and in the Frequency Domain

Authors: Azeddine Ghodbane, David Bensoussan, Maher Hammami

Abstract:

In this study, we introduce an alternative adaptive architecture that enhances both time and frequency performance, helpfully mitigating the effects of disturbances from the input plant and external disturbances affecting the output. To facilitate superior performance in both the time and frequency domains, we have developed a user-friendly interactive design methods using the GeoGebra platform.

Keywords: Control theory, decentralized control, sensitivity theory, input-output stability theory, robust multivariable feedback control design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210
8175 Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays

Authors: Yucai Ding, Hong Zhu, Shouming Zhong, Yuping Zhang

Abstract:

This paper considers ­H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed ­H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.

Keywords: ­H∞ performance, Markovian switching, Delaydependent stability, Linear matrix inequality (LMI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
8174 Model Order Reduction of Linear Time Variant High Speed VLSI Interconnects using Frequency Shift Technique

Authors: J.V.R.Ravindra, M.B.Srinivas,

Abstract:

Accurate modeling of high speed RLC interconnects has become a necessity to address signal integrity issues in current VLSI design. To accurately model a dispersive system of interconnects at higher frequencies; a full-wave analysis is required. However, conventional circuit simulation of interconnects with full wave models is extremely CPU expensive. We present an algorithm for reducing large VLSI circuits to much smaller ones with similar input-output behavior. A key feature of our method, called Frequency Shift Technique, is that it is capable of reducing linear time-varying systems. This enables it to capture frequency-translation and sampling behavior, important in communication subsystems such as mixers, RF components and switched-capacitor filters. Reduction is obtained by projecting the original system described by linear differential equations into a lower dimension. Experiments have been carried out using Cadence Design Simulator cwhich indicates that the proposed technique achieves more % reduction with less CPU time than the other model order reduction techniques existing in literature. We also present applications to RF circuit subsystems, obtaining size reductions and evaluation speedups of orders of magnitude with insignificant loss of accuracy.

Keywords: Model order Reduction, RLC, crosstalk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
8173 Exponential Stability and Periodicity of a Class of Cellular Neural Networks with Time-Varying Delays

Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye

Abstract:

The problem of exponential stability and periodicity for a class of cellular neural networks (DCNNs) with time-varying delays is investigated. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions for exponential stability and periodicity are derived via the methods of variation parameters and inequality techniques. These conditions are represented by some blocks of the interconnection matrices. Compared with some previous methods, the method used in this paper does not resort to any Lyapunov function, and the results derived in this paper improve and generalize some earlier criteria established in the literature cited therein. Two examples are discussed to illustrate the main results.

Keywords: Cellular neural networks, exponential stability, time varying delays, partitioned matrices, periodic solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
8172 Parametric Analysis in the Electronic Sensor Frequency Adjustment Process

Authors: Rungchat Chompu-Inwai, Akararit Charoenkasemsuk

Abstract:

The use of electronic sensors in the electronics industry has become increasingly popular over the past few years, and it has become a high competition product. The frequency adjustment process is regarded as one of the most important process in the electronic sensor manufacturing process. Due to inaccuracies in the frequency adjustment process, up to 80% waste can be caused due to rework processes; therefore, this study aims to provide a preliminary understanding of the role of parameters used in the frequency adjustment process, and also make suggestions in order to further improve performance. Four parameters are considered in this study: air pressure, dispensing time, vacuum force, and the distance between the needle tip and the product. A full factorial design for experiment 2k was considered to determine those parameters that significantly affect the accuracy of the frequency adjustment process, where a deviation in the frequency after adjustment and the target frequency is expected to be 0 kHz. The experiment was conducted on two levels, using two replications and with five center-points added. In total, 37 experiments were carried out. The results reveal that air pressure and dispensing time significantly affect the frequency adjustment process. The mathematical relationship between these two parameters was formulated, and the optimal parameters for air pressure and dispensing time were found to be 0.45 MPa and 458 ms, respectively. The optimal parameters were examined by carrying out a confirmation experiment in which an average deviation of 0.082 kHz was achieved.

Keywords: Design of Experiment, Electronic Sensor, Frequency Adjustment, Parametric Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
8171 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models

Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar

Abstract:

This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.

Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
8170 Analytical Crack Propagation Scenario for Gear Teeth and Time-Varying Gear Mesh Stiffness

Authors: Omar D. Mohammed, Matti Rantatalo, Uday Kumar

Abstract:

In this paper an analytical crack propagation scenario is proposed which assumes that a crack propagates in the tooth root in both the crack depth direction and the tooth width direction, and which is more reasonable and realistic for non-uniform load distribution cases than the other presented scenarios. An analytical approach is used for quantifying the loss of time-varying gear mesh stiffness with the presence of crack propagation in the gear tooth root. The proposed crack propagation scenario can be applied for crack propagation modelling and monitoring simulation, but further research is required for comparison and evaluation of all the presented crack propagation scenarios from the condition monitoring point of view.

Keywords: Crack propagation, Gear tooth crack, Time varying gear mesh stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813
8169 Robust Stability Criteria for Uncertain Genetic Regulatory Networks with Time-Varying Delays

Authors: Wenqin Wang, Shouming Zhong

Abstract:

This paper presents the robust stability criteria for uncertain genetic regulatory networks with time-varying delays. One key point of the criterion is that the decomposition of the matrix ˜D into ˜D = ˜D1 + ˜D2. This decomposition corresponds to a decomposition of the delayed terms into two groups: the stabilizing ones and the destabilizing ones. This technique enables one to take the stabilizing effect of part of the delayed terms into account. Meanwhile, by choosing an appropriate new Lyapunov functional, a new delay-dependent stability criteria is obtained and formulated in terms of linear matrix inequalities (LMIs). Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results.

Keywords: Genetic regulatory network, Time-varying delay, Uncertain system, Lyapunov-Krasovskii functional

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
8168 The Calculation of Electromagnetic Fields (EMF) in Substations of Shopping Centers

Authors: Adnan Muharemovic, Hidajet Salkic, Mario Klaric, Irfan Turkovic, Aida Muharemovic

Abstract:

In nature, electromagnetic fields always appear like atmosphere static electric field, the earth's static magnetic field and the wide-rang frequency electromagnetic field caused by lightening. However, besides natural electromagnetic fields (EMF), today human beings are mostly exposed to artificial electromagnetic fields due to technology progress and outspread use of electrical devices. To evaluate nuisance of EMF, it is necessary to know field intensity for every frequency which appears and compare it with allowed values. Low frequency EMF-s around transmission and distribution lines are time-varying quasi-static electromagnetic fields which have conservative component of low frequency electrical field caused by charges and eddy component of low frequency magnetic field caused by currents. Displacement current or field delay are negligible, so energy flow in quasi-static EMF involves diffusion, analog like heat transfer. Electrical and magnetic field can be analyzed separately. This paper analysis the numerical calculations in ELF-400 software of EMF in distribution substation in shopping center. Analyzing the results it is possible to specify locations exposed to the fields and give useful suggestion to eliminate electromagnetic effect or reduce it on acceptable level within the non-ionizing radiation norms and norms of protection from EMF.

Keywords: Electromagnetic Field, Density of Electromagnetic Flow, Place of Proffesional Exposure, Place of Increased Sensitivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3858
8167 Augmented Lyapunov Approach to Robust Stability of Discrete-time Stochastic Neural Networks with Time-varying Delays

Authors: Shu Lü, Shouming Zhong, Zixin Liu

Abstract:

In this paper, the robust exponential stability problem of discrete-time uncertain stochastic neural networks with timevarying delays is investigated. By introducing a new augmented Lyapunov function, some delay-dependent stable results are obtained in terms of linear matrix inequality (LMI) technique. Compared with some existing results in the literature, the conservatism of the new criteria is reduced notably. Three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed method.

Keywords: Robust exponential stability, delay-dependent stability, discrete-time neural networks, stochastic, time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
8166 Adaptive Notch Filter for Harmonic Current Mitigation

Authors: T. Messikh, S. Mekhilef, N. A. Rahim

Abstract:

This paper presents an effective technique for harmonic current mitigation using an adaptive notch filter (ANF) to estimate current harmonics. The proposed filter consists of multiple units of ANF connected in parallel structure; each unit is governed by two ordinary differential equations. The frequency estimation is carried out based on the output of these units. The simulation and experimental results show the ability of the proposed tracking scheme to accurately estimate harmonics. The proposed filter was implemented digitally in TMS320F2808 and used in the control of hybrid active power filter (HAPF). The theoretical expectations are verified and demonstrated experimentally.

Keywords: Adaptive notch filter, Active power filter, harmonic filtering, Time varying frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052
8165 A Novel Approach to Positive Almost Periodic Solution of BAM Neural Networks with Time-Varying Delays

Authors: Lili Wang, Meng Hu

Abstract:

In this paper, based on almost periodic functional hull theory and M-matrix theory, some sufficient conditions are established for the existence and uniqueness of positive almost periodic solution for a class of BAM neural networks with time-varying delays. An example is given to illustrate the main results.

Keywords: Delayed BAM neural networks, Hull theorem, Mmatrix, Almost periodic solution, Global exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
8164 Comparative Dynamic Performance of Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Intelligent Techniques

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper demonstrates dynamic performance evaluation of load frequency control (LFC) with different intelligent techniques. All non-linearities and physical constraints have been considered in simulation studies such as governor dead band (GDB), generation rate constraint (GRC) and boiler dynamics. The conventional integral time absolute error has been considered as objective function. The design problem is formulated as an optimisation problem and particle swarm optimisation (PSO), bacterial foraging optimisation algorithm (BFOA) and differential evolution (DE) are employed to search optimal controller parameters. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic control (FLC) for the same interconnected power system. The comparison is done using various performance measures like overshoot, undershoot, settling time and standard error criteria of frequency and tie-line power deviation following a step load perturbation (SLP). It is noticed that, the dynamic performance of proposed controller is better than FLC. Further, robustness analysis is carried out by varying the time constants of speed governor, turbine, tie-line power in the range of +40% to -40% to demonstrate the robustness of the proposed DE optimized PID controller.

Keywords: Automatic generation control, governor dead band, generation rate constraint, differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
8163 Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks

Authors: Siliang Wang, Minghui Wang, Jun Hu

Abstract:

A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.

Keywords: pruning method, stochastic, time-varying networks, optimal path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
8162 Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus

Authors: P. T. Ahamed Seyd, V. I. Thajudin Ahamed, Jeevamma Jacob, Paul Joseph K

Abstract:

Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.

Keywords: Autonomic nervous system, diabetes mellitus, frequency domain and time domain analysis, heart rate variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110
8161 Comparison of S-transform and Wavelet Transform in Power Quality Analysis

Authors: Mohammad Javad Dehghani

Abstract:

In the power quality analysis non-stationary nature of voltage distortions require some precise and powerful analytical techniques. The time-frequency representation (TFR) provides a powerful method for identification of the non-stationary of the signals. This paper investigates a comparative study on two techniques for analysis and visualization of voltage distortions with time-varying amplitudes. The techniques include the Discrete Wavelet Transform (DWT), and the S-Transform. Several power quality problems are analyzed using both the discrete wavelet transform and S–transform, showing clearly the advantage of the S– transform in detecting, localizing, and classifying the power quality problems.

Keywords: Power quality, S-Transform, Short Time FourierTransform , Wavelet Transform, instantaneous sag, swell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812
8160 Exponential Stability Analysis for Switched Cellular Neural Networks with Time-varying Delays and Impulsive Effects

Authors: Zixin Liu, Fangwei Chen

Abstract:

In this Letter, a class of impulsive switched cellular neural networks with time-varying delays is investigated. At the same time, parametric uncertainties assumed to be norm bounded are considered. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions guaranteeing exponential stability for all admissible parametric uncertainties are derived via constructing appropriate Lyapunov functional. One numerical example is provided to illustrate the validity of the main results obtained in this paper.

Keywords: Switched systems, exponential stability, cellular neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
8159 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.

Keywords: Cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
8158 A Frequency Grouping Approach for Blind Deconvolution of Fairly Motionless Sources

Authors: E. S. Gower, T. Tsalaile, E. Rakgati, M. O. J. Hawksford

Abstract:

A frequency grouping approach for multi-channel instantaneous blind source separation (I-BSS) of convolutive mixtures is proposed for a lower net residual inter-symbol interference (ISI) and inter-channel interference (ICI) than the conventional short-time Fourier transform (STFT) approach. Starting in the time domain, STFTs are taken with overlapping windows to convert the convolutive mixing problem into frequency domain instantaneous mixing. Mixture samples at the same frequency but from different STFT windows are grouped together forming unique frequency groups. The individual frequency group vectors are input to the I-BSS algorithm of choice, from which the output samples are dispersed back to their respective STFT windows. After applying the inverse STFT, the resulting time domain signals are used to construct the complete source estimates via the weighted overlap-add method (WOLA). The proposed algorithm is tested for source deconvolution given two mixtures, and simulated along with the STFT approach to illustrate its superiority for fairly motionless sources.

Keywords: Blind source separation, short-time Fouriertransform, weighted overlap-add method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
8157 Precombining Adaptive LMMSE Detection for DS-CDMA Systems in Time Varying Channels: Non Blind and Blind Approaches

Authors: M. D. Kokate, T. R. Sontakke, P. W. Wani

Abstract:

This paper deals with an adaptive multiuser detector for direct sequence code division multiple-access (DS-CDMA) systems. A modified receiver, precombinig LMMSE is considered under time varying channel environment. Detector updating is performed with two criterions, mean square estimation (MSE) and MOE optimization technique. The adaptive implementation issues of these two schemes are quite different. MSE criterion updates the filter weights by minimizing error between data vector and adaptive vector. MOE criterion together with canonical representation of the detector results in a constrained optimization problem. Even though the canonical representation is very complicated under time varying channels, it is analyzed with assumption of average power profile of multipath replicas of user of interest. The performance of both schemes is studied for practical SNR conditions. Results show that for poor SNR, MSE precombining LMMSE is better than the blind precombining LMMSE but for greater SNR, MOE scheme outperforms with better result.

Keywords: LMMSE, MOE, MUD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
8156 Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator

Authors: Raja Singh Khela, R. K. Bansal, K. S. Sandhu, A. K. Goel

Abstract:

Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.

Keywords: Self-Excited Induction Generator, Artificial NeuralNetworks, Exciting Capacitance and Saturated magnetizingreactance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689