Search results for: Quantum information processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5286

Search results for: Quantum information processing

5256 Bridged Quantum Cellular Automata based on Si/SiO2 Superlattices

Authors: I.V. Matyushkin

Abstract:

The new architecture for quantum cellular automata is offered. A QCA cell includes two layers nc-Si, divided by a dielectric. Among themselves cells are connected by the bridge from a conductive material. The comparison is made between this and QCA, offered earlier by C. Lent's group.

Keywords: quantum cellular automata (QCA), nc-Si, Si/SiO2 superlattices, parallel computing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
5255 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities

Authors: Khaled M. Alhawiti

Abstract:

This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research.

Keywords: Data Retrieval, Information retrieval, Natural Language Processing, Text Structuring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801
5254 Analysis of Network Performance Using Aspect of Quantum Cryptography

Authors: Nisarg A. Patel, Hiren B. Patel

Abstract:

Quantum cryptography is described as a point-to-point secure key generation technology that has emerged in recent times in providing absolute security. Researchers have started studying new innovative approaches to exploit the security of Quantum Key Distribution (QKD) for a large-scale communication system. A number of approaches and models for utilization of QKD for secure communication have been developed. The uncertainty principle in quantum mechanics created a new paradigm for QKD. One of the approaches for use of QKD involved network fashioned security. The main goal was point-to-point Quantum network that exploited QKD technology for end-to-end network security via high speed QKD. Other approaches and models equipped with QKD in network fashion are introduced in the literature as. A different approach that this paper deals with is using QKD in existing protocols, which are widely used on the Internet to enhance security with main objective of unconditional security. Our work is towards the analysis of the QKD in Mobile ad-hoc network (MANET).

Keywords: QKD, cryptography, quantum cryptography, network performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
5253 Quantum Computing: A New Era of Computing

Authors: Jyoti Chaturvedi Gursaran

Abstract:

Nature conducts its action in a very private manner. To reveal these actions classical science has done a great effort. But classical science can experiment only with the things that can be seen with eyes. Beyond the scope of classical science quantum science works very well. It is based on some postulates like qubit, superposition of two states, entanglement, measurement and evolution of states that are briefly described in the present paper. One of the applications of quantum computing i.e. implementation of a novel quantum evolutionary algorithm(QEA) to automate the time tabling problem of Dayalbagh Educational Institute (Deemed University) is also presented in this paper. Making a good timetable is a scheduling problem. It is NP-hard, multi-constrained, complex and a combinatorial optimization problem. The solution of this problem cannot be obtained in polynomial time. The QEA uses genetic operators on the Q-bit as well as updating operator of quantum gate which is introduced as a variation operator to converge toward better solutions.

Keywords: Quantum computing, qubit, superposition, entanglement, measurement of states, evolution of states, Scheduling problem, hard and soft constraints, evolutionary algorithm, quantum evolutionary algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2633
5252 Boosting Method for Automated Feature Space Discovery in Supervised Quantum Machine Learning Models

Authors: Vladimir Rastunkov, Jae-Eun Park, Abhijit Mitra, Brian Quanz, Steve Wood, Christopher Codella, Heather Higgins, Joseph Broz

Abstract:

Quantum Support Vector Machines (QSVM) have become an important tool in research and applications of quantum kernel methods. In this work we propose a boosting approach for building ensembles of QSVM models and assess performance improvement across multiple datasets. This approach is derived from the best ensemble building practices that worked well in traditional machine learning and thus should push the limits of quantum model performance even further. We find that in some cases, a single QSVM model with tuned hyperparameters is sufficient to simulate the data, while in others - an ensemble of QSVMs that are forced to do exploration of the feature space via proposed method is beneficial.

Keywords: QSVM, Quantum Support Vector Machines, quantum kernel, boosting, ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 402
5251 Single-qubit Quantum Gates using Magneto-optic Kerr Effect

Authors: Pradeep Kumar K

Abstract:

We propose the use of magneto-optic Kerr effect (MOKE) to realize single-qubit quantum gates. We consider longitudinal and polar MOKE in reflection geometry in which the magnetic field is parallel to both the plane of incidence and surface of the film. MOKE couples incident TE and TM polarized photons and the Hamiltonian that represents this interaction is isomorphic to that of a canonical two-level quantum system. By varying the phase and amplitude of the magnetic field, we can realize Hadamard, NOT, and arbitrary phase-shift single-qubit quantum gates. The principal advantage is operation with magnetically non-transparent materials.

Keywords: Quantum computing, qubit, magneto-optic kerr effect (MOKE), magneto-optical interactions, continuous variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
5250 Instability of Electron Plasma Waves in an Electron-Hole Bounded Quantum Dusty Plasma

Authors: Basudev Ghosh, Sailendranath Paul, Sreyasi Banerjee

Abstract:

Using quantum hydrodynamical (QHD) model the linear dispersion relation for the electron plasma waves propagating in a cylindrical waveguide filled with a dense plasma containing streaming electron, hole and stationary charged dust particles has been derived. It is shown that the effect of finite boundary and stream velocity of electrons and holes make some of the possible modes of propagation linearly unstable. The growth rate of this instability is shown to depend significantly on different plasma parameters.

Keywords: Electron Plasma wave, Quantum plasma, Quantum Hydrodynamical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
5249 A Functional Interpretation of Quantum Theory

Authors: Hans H. Diel

Abstract:

In this paper a functional interpretation of quantum theory (QT) with emphasis on quantum field theory (QFT) is proposed. Besides the usual statements on relations between a functions initial state and final state, a functional interpretation also contains a description of the dynamic evolution of the function. That is, it describes how things function. The proposed functional interpretation of QT/QFT has been developed in the context of the author-s work towards a computer model of QT with the goal of supporting the largest possible scope of QT concepts. In the course of this work, the author encountered a number of problems inherent in the translation of quantum physics into a computer program. He came to the conclusion that the goal of supporting the major QT concepts can only be satisfied, if the present model of QT is supplemented by a "functional interpretation" of QT/QFT. The paper describes a proposal for that

Keywords: Computability, Foundation of Quantum Mechanics, Measurement Problem, Models of Physics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
5248 Data Preprocessing for Supervised Leaning

Authors: S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas

Abstract:

Many factors affect the success of Machine Learning (ML) on a given task. The representation and quality of the instance data is first and foremost. If there is much irrelevant and redundant information present or noisy and unreliable data, then knowledge discovery during the training phase is more difficult. It is well known that data preparation and filtering steps take considerable amount of processing time in ML problems. Data pre-processing includes data cleaning, normalization, transformation, feature extraction and selection, etc. The product of data pre-processing is the final training set. It would be nice if a single sequence of data pre-processing algorithms had the best performance for each data set but this is not happened. Thus, we present the most well know algorithms for each step of data pre-processing so that one achieves the best performance for their data set.

Keywords: Data mining, feature selection, data cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5993
5247 Influence of an External Magnetic Field on the Acoustomagnetoelectric Field in a Rectangular Quantum Wire with an Infinite Potential by Using a Quantum Kinetic Equation

Authors: N. Q. Bau, N. V. Nghia

Abstract:

The acoustomagnetoelectric (AME) field in a rectangular quantum wire with an infinite potential (RQWIP) is calculated in the presence of an external magnetic field (EMF) by using the quantum kinetic equation for the distribution function of electrons system interacting with external phonons and electrons scattering with internal acoustic phonon in a RQWIP. We obtained ananalytic expression for the AME field in the RQWIP in the presence of the EMF. The dependence of AME field on the frequency of external acoustic wave, the temperature T of system, the cyclotron frequency of the EMF and the intensity of the EMF is obtained. Theoretical results for the AME field are numerically evaluated, plotted and discussed for a specific RQWIP GaAs/GaAsAl. This result has shown that the dependence of the AME field on intensity of the EMF is nonlinearly and it is many distinct maxima in the quantized magnetic region. We also compared received fields with those for normal bulk semiconductors, quantum well and quantum wire to show the difference. The influence of an EMF on AME field in a RQWIP is newly developed.

Keywords: Rectangular quantum wire, acoustomagnetoelectric field, electron-phonon interaction, kinetic equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
5246 Open Problems on Zeros of Analytic Functions in Finite Quantum Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation on basic problems about the zeros of analytic theta functions. A brief introduction to analytic representation of finite quantum systems is given. The zeros of this function and there evolution time are discussed. Two open problems are introduced. The first problem discusses the cases when the zeros follow the same path. As the basis change the quantum state |f transforms into different quantum state. The second problem is to define a map between two toruses where the domain and the range of this map are the analytic functions on toruses.

Keywords: open problems, constraint, change of basis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
5245 Array Signal Processing: DOA Estimation for Missing Sensors

Authors: Lalita Gupta, R. P. Singh

Abstract:

Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.

Keywords: Array Signal Processing, Beamforming, ULA, Direction of Arrival, MUSIC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2999
5244 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: Document processing, framework, formal definition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
5243 Pulsed Multi-Layered Image Filtering: A VLSI Implementation

Authors: Christian Mayr, Holger Eisenreich, Stephan Henker, René Schüffny

Abstract:

Image convolution similar to the receptive fields found in mammalian visual pathways has long been used in conventional image processing in the form of Gabor masks. However, no VLSI implementation of parallel, multi-layered pulsed processing has been brought forward which would emulate this property. We present a technical realization of such a pulsed image processing scheme. The discussed IC also serves as a general testbed for VLSI-based pulsed information processing, which is of interest especially with regard to the robustness of representing an analog signal in the phase or duration of a pulsed, quasi-digital signal, as well as the possibility of direct digital manipulation of such an analog signal. The network connectivity and processing properties are reconfigurable so as to allow adaptation to various processing tasks.

Keywords: Neural image processing, pulse computation application, pulsed Gabor convolution, VLSI pulse routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
5242 Quantum Ion Acoustic Solitary and Shock Waves in Dissipative Warm Plasma with Fermi Electron and Positron

Authors: Hamid Reza Pakzad

Abstract:

Ion-acoustic solitary and shock waves in dense quantum plasmas whose constituents are electrons, positrons, and positive ions are investigated. We assume that ion velocity is weakly relativistic and also the effects of kinematic viscosity among the plasma constituents is considered. By using the reductive perturbation method, the Korteweg–deVries–Burger (KdV-B) equation is derived.

Keywords: Ion acoustic shock waves; Quantum plasmas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
5241 Expert System for Chose Material used Gears

Authors: E.V. Butilă, F. Gîrbacia

Abstract:

In order to give high expertise the computer aided design of mechanical systems involves specific activities focused on processing two type of information: knowledge and data. Expert rule based knowledge is generally processing qualitative information and involves searching for proper solutions and their combination into synthetic variant. Data processing is based on computational models and it is supposed to be inter-related with reasoning in the knowledge processing. In this paper an Intelligent Integrated System is proposed, for the objective of choosing the adequate material. The software is developed in Prolog – Flex software and takes into account various constraints that appear in the accurate operation of gears.

Keywords: Expert System, computer aided design, gear boxdesign, chose material, Prolog, Flex

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
5240 Higher-Dimensional Quantum Cryptography

Authors: Bradley Christensen, Kevin T. McCusker, Daniel J. Gauthier, Daniel Kumor, Venkat Chandar, P. G. Kwiat

Abstract:

We report on a high-speed quantum cryptography system that utilizes simultaneous entanglement in polarization and in “time-bins". With multiple degrees of freedom contributing to the secret key, we can achieve over ten bits of random entropy per detected coincidence. In addition, we collect from multiple spots o the downconversion cone to further amplify the data rate, allowing usto achieve over 10 Mbits of secure key per second.

Keywords: Downconversion, Hyper-entanglement, Quantum Cryptography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
5239 The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering

Authors: Hoang Van Ngoc, Nguyen Vu Nhan, Nguyen Quang Bau

Abstract:

The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.

Keywords: The light-effect, cylindrical quantum wire with an infinite potential, the density of the direct current, electrons - optical phonon scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
5238 Relaxation Dynamics of Quantum Emitters Resonantly Coupled to a Localized Surface Plasmon

Authors: Khachatur V. Nerkararyan, Sergey I. Bozhevolnyi

Abstract:

We investigate relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. It is shown that under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free-space but much longer than the LSP lifetime. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being about 0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. The degree of entanglement measured by the concurrency takes the maximum value, while the distances between the QDEs and metal ball approximately are equal.

Keywords: Metal nanoparticle, Localized surface plasmon, Quantum dipole emitter, Relaxation dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
5237 Ultrafast Transistor Laser Containing Graded Index Separate Confinement Heterostructure

Authors: Mohammad Hosseini

Abstract:

Ultrafast transistor laser investigated here has the graded index separate confinement heterostructure (GRIN-SCH) in its base region. Resonance-free optical frequency response with -3 dB bandwidth of more than 26 GHz has been achieved for a single quantum well transistor laser by using graded index layers of AlξGa1-ξAs (ξ: 0.1→0) in the left side of quantum well and AlξGa1-ξAs (ξ: 0.05→0) in the right side of quantum well. All required parameters, including quantum well and base transit time, optical confinement factor and spontaneous recombination lifetime, have been calculated using a self-consistent charge control model.

Keywords: Transistor laser, ultrafast, GRIN-SCH, -3db optical bandwidth, AlξGa1-ξAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134
5236 Compton Scattering of Annihilation Photons as a Short Range Quantum Key Distribution Mechanism

Authors: Roman Novak, Matjaz Vencelj

Abstract:

The angular distribution of Compton scattering of two quanta originating in the annihilation of a positron with an electron is investigated as a quantum key distribution (QKD) mechanism in the gamma spectral range. The geometry of coincident Compton scattering is observed on the two sides as a way to obtain partially correlated readings on the quantum channel. We derive the noise probability density function of a conceptually equivalent prepare and measure quantum channel in order to evaluate the limits of the concept in terms of the device secrecy capacity and estimate it at roughly 1.9 bits per 1 000 annihilation events. The high error rate is well above the tolerable error rates of the common reconciliation protocols; therefore, the proposed key agreement protocol by public discussion requires key reconciliation using classical error-correcting codes. We constructed a prototype device based on the readily available monolithic detectors in the least complex setup.

Keywords: Compton scattering, gamma-ray polarization, quantumcryptography, quantum key distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
5235 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation

Authors: Nguyen Thu Huong, Nguyen Quang Bau

Abstract:

The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.

Keywords: Hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
5234 Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

Authors: A. Maghari, V. H. Maleki

Abstract:

In this paper, we present a quantum statistical mechanical formulation from our recently analytical expressions for partial-wave transition matrix of a three-particle system. We report the quantum reactive cross sections for three-body scattering processes 1+(2,3)→1+(2,3) as well as recombination 1+(2,3)→1+(3,1) between one atom and a weakly-bound dimer. The analytical expressions of three-particle transition matrices and their corresponding cross-sections were obtained from the threedimensional Faddeev equations subjected to the rank-two non-local separable potentials of the generalized Yamaguchi form. The equilibrium quantum statistical mechanical properties such partition function and equation of state as well as non-equilibrium quantum statistical properties such as transport cross-sections and their corresponding transport collision integrals were formulated analytically. This leads to obtain the transport properties, such as viscosity and diffusion coefficient of a moderate dense gas.

Keywords: Statistical mechanics, Nonlocal separable potential, three-body interaction, Faddeev equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
5233 Accelerating Side Channel Analysis with Distributed and Parallelized Processing

Authors: Kyunghee Oh, Dooho Choi

Abstract:

Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.

Keywords: DPA, distributed computing, parallelized processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
5232 Hall Coefficient in the Presence of Strong Electromagnetic Waves Caused by Confined Electrons and Phonons in a Rectangular Quantum Wire

Authors: Nguyen Quang Bau, Nguyen Thu Huong, Dang Thi Thanh Thuy

Abstract:

The analytic expression for the Hall Coefficient (HC) caused by the confined electrons in the presence of a strong electromagnetic wave (EMW) including the effect of phonon confinement in rectangular quantum wires (RQWs) is calculated by using the quantum kinetic equation for electrons in the case of electron - optical phonon scattering. It is because the expression of the HC for the confined phonon case contains indexes m, m’ which are specific to the phonon confinement. The expression in a RQW is different from that for the case of unconfined phonons in a RQW or in 2D. The results are numerically calculated and discussed for a GaAs/GaAsAl RQW. The numerical results show that HC in a RQW can have both negative and positive values. This is different from the case of the absence of EMW and the case presence of EMW including the effect of phonon unconfinement in a RQW. These results are also compared with those in the case of unconfined phonons in a RQW and confined phonons in a quantum well. The conductivity in the case of confined phonon has more resonance peaks compared with that in case of unconfined phonons in a RQW. This new property is the same in quantum well. All results are compared with the case of unconfined phonons to see differences.

Keywords: Hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation, confined phonons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
5231 Information Retrieval: Improving Question Answering Systems by Query Reformulation and Answer Validation

Authors: Mohammad Reza Kangavari, Samira Ghandchi, Manak Golpour

Abstract:

Question answering (QA) aims at retrieving precise information from a large collection of documents. Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems to reformulate questions. Moreover answer processing module is an emerging topic in QA systems, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic relations and co-occurrence keywords. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing which both affect on the evaluation of the system operations. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. The objective of an Answer Validation task is thus to judge the correctness of an answer returned by a QA system, according to the text snippet given to support it. For validating answers we apply candidate answer filtering, candidate answer ranking and also it has a final validation section by user voting. Also this paper described new architecture of question and answer processing modules with modeling, implementing and evaluating the system. The system differs from most question answering systems in its answer validation model. This module makes it more suitable to find exact answer. Results show that, from total 50 asked questions, evaluation of the model, show 92% improving the decision of the system.

Keywords: Answer processing, answer validation, classification, question answering, query reformulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2819
5230 Modelling of Electron States in Quantum -Wire Systems - Influence of Stochastic Effects on the Confining Potential

Authors: Mikhail Vladimirovich Deryabin, Morten Willatzen

Abstract:

In this work, we address theoretically the influence of red and white Gaussian noise for electronic energies and eigenstates of cylindrically shaped quantum dots. The stochastic effect can be imagined as resulting from crystal-growth statistical fluctuations in the quantum-dot material composition. In particular we obtain analytical expressions for the eigenvalue shifts and electronic envelope functions in the k . p formalism due to stochastic variations in the confining band-edge potential. It is shown that white noise in the band-edge potential leaves electronic properties almost unaffected while red noise may lead to changes in state energies and envelopefunction amplitudes of several percentages. In the latter case, the ensemble-averaged envelope function decays as a function of distance. It is also shown that, in a stochastic system, constant ensembleaveraged envelope functions are the only bounded solutions for the infinite quantum-wire problem and the energy spectrum is completely discrete. In other words, the infinite stochastic quantum wire behaves, ensemble-averaged, as an atom.

Keywords: cylindrical quantum dots, electronic eigen energies, red and white Gaussian noise, ensemble averaging effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
5229 A Novel Method for Behavior Modeling in Uncertain Information Systems

Authors: Ali Haroonabadi, Mohammad Teshnehlab

Abstract:

None of the processing models in the software development has explained the software systems performance evaluation and modeling; likewise, there exist uncertainty in the information systems because of the natural essence of requirements, and this may cause other challenges in the processing of software development. By definition an extended version of UML (Fuzzy- UML), the functional requirements of the software defined uncertainly would be supported. In this study, the behavioral description of uncertain information systems by the aid of fuzzy-state diagram is crucial; moreover, the introduction of behavioral diagrams role in F-UML is investigated in software performance modeling process. To get the aim, a fuzzy sub-profile is used.

Keywords: Fuzzy System, Software Development Model, Software Performance Evaluation, UML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
5228 Image Processing Using Color and Object Information for Wireless Capsule Endoscopy

Authors: Jin-Hee Park, Yong-Gyu Lee, Gilwon Yoon

Abstract:

Wireless capsule endoscopy provides real-time images in the digestive tract. Capsule images are usually low resolution and are diverse images due to travel through various regions of human body. Color information has been a primary reference in predicting abnormalities such as bleeding. Often color is not sufficient for this purpose. In this study, we took morphological shapes into account as additional, but important criterion. First, we processed gastric images in order to indentify various objects in the image. Then, we analyzed color information in the object. In this way, we could remove unnecessary information and increase the accuracy. Compared to our previous investigations, we could handle images of various degrees of brightness and improve our diagnostic algorithm.

Keywords: Capsule Endoscopy, HSV model, Image processing, Object Identification, Color Separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
5227 Re-Optimization MVPP Using Common Subexpression for Materialized View Selection

Authors: Boontita Suchyukorn, Raweewan Auepanwiriyakul

Abstract:

A Data Warehouses is a repository of information integrated from source data. Information stored in data warehouse is the form of materialized in order to provide the better performance for answering the queries. Deciding which appropriated views to be materialized is one of important problem. In order to achieve this requirement, the constructing search space close to optimal is a necessary task. It will provide effective result for selecting view to be materialized. In this paper we have proposed an approach to reoptimize Multiple View Processing Plan (MVPP) by using global common subexpressions. The merged queries which have query processing cost not close to optimal would be rewritten. The experiment shows that our approach can help to improve the total query processing cost of MVPP and sum of query processing cost and materialized view maintenance cost is reduced as well after views are selected to be materialized.

Keywords: Data Warehouse, materialized views, query rewriting, common subexpressions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649