Search results for: Effect of gas lift valve port size
6212 Effects of Turbulence Penetration on Valve Leakage in Nuclear Reactor Coolant System
Authors: Gupta Rajesh, Paudel Sagar, Sharma Utkarsh, Singh Amit Kumar
Abstract:
Thermal stratification has drawn much attention because of the malfunctions at various nuclear plants in U.S.A that raised significant safety concerns. The concerns due to this phenomenon relate to thermal stresses in branch pipes connected to the reactor coolant system piping. This stress limits the lifetime of the piping system, and even leading to penetrating cracks. To assess origin of valve damage in the pipeline, it is essential to determine the effect of turbulence penetration on valve leakage; since stratified flow is generally generated by turbulent penetration or valve leakage. As a result, we concluded with the help of coupled fluent-structural analysis that the pipe with less turbulence has less chance of failure there by requiring less maintenance.
Keywords: Reactor coolant system, thermal stratification, turbulent penetration, coupled fluent-structural analysis, Von Mises stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14826211 Hysteresis Modulation Based Sliding Mode Control for Positive Output Elementary Super Lift Luo Converter
Authors: K. Ramash Kumar, S. Jeevananthan
Abstract:
The Object of this paper is to design and analyze a Hysteresis modulation based sliding mode control (HMSMC) for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a HMSMC capable of providing the good steady state and dynamic performance compared to conventional controllers. Dynamic equations describing the positive output elementary super lift luo converter are derived by using state space average method. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The HMSMC for positive output elementary super lift Luo converter is tested for line changes, load changes and also for components variations.Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Hysteresis modulation basedsliding mode control (HMSMC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22536210 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation
Authors: Aymen Laadhari, Gábor Székely
Abstract:
In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.
Keywords: Hemodynamics, Transcatheter Aortic Valve Implantation, blood flow stagnation, numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11016209 Ecological Risk Assessment of Poly Aromatic Hydrocarbons in the North Port, Malaysia
Authors: Belin Tavakoly Sany, Aishah Salleh, Abdul Halim Sulaiman, Ghazaleh Monazami Tehrani
Abstract:
The pollution of sediments sampled from the North Port by polycyclic aromatic hydrocarbons (PAHs) was investigated. Concentrations of PAHs estimated in the port sediments ranged from 199 to 2851.2 μg/kg dw. The highest concentration was found which is closed to the Berth line, this locations affected by intensive shipping activities and Land based runoff and they were dominated by the high molecular weight PAHs (4–6- rings). Source identification showed that PAHs originated mostly from the pyrogenic source either from the combustion of fossil fuels, grass, wood and coal (majority of the samples). Ecological Risk Assessment on the port sediments presented that slightly adverse ecological effects to biological community are expected to occur at the vicinity of the stations 1 and 4. Thus PAHs are not considered as pollutants of concern in the North Port.Keywords: PAHs, North Port, Ecological Risk, sediment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18466208 Maintenance Dredging at Port of Townsville
Authors: M. Jaditager, J. Lovisa, N. Sivakugan
Abstract:
The Port of Townsville conducts regular annual maintenance dredging to maintain depths of its harbor basin and approach channels for the navigational safety of the vessels against the natural accumulation of marine sediments. In addition to the regular maintenance dredging, the port undertakes emergency dredging in cases where large quantities of sediments are mobilized and deposited in port waters by cyclone or major flood events. The maintenance dredging material derived from the port may be disposed at sea or on land in accordance with relevant state and commonwealth regulations. For the land disposal, the dredged mud slurry is hydraulically placed into containment ponds and left to undergo sedimentation and self-weight consolidation to form fill material for land reclamation. This paper provides an overview of the maintenance dredging at the Port of Townsville and emphasis on maintenance dredging requirements, sediment quality, bathymetry, dredging methods used, and dredged material disposal options.
Keywords: Consolidation, dredged material, maintenance dredging, marine sediments, sedimentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24506207 Simulation-Based Optimization in Performance Evaluation of Marshaling Yard Storage Policy in a Container Port
Authors: Mohammad Reza Ghanbari, Parham Azimi, Farrokh Abdollahi
Abstract:
Since the last two decades, container transportation system has been faced under increasing development. This fact shows the importance of container transportation system as a key role of container terminals to link between sea and land. Therefore, there is a continuous need for the optimal use of equipment and facilities in the ports. Regarding the complex structure of container ports, this paper presents a simulation model that compares tow storage strategies for storing containers in the yard. For this purpose, we considered loading and unloading norm as an important criterion to evaluate the performance of Shahid Rajaee container port. By analysing the results of the model, it will be shown that using marshalling yard policy instead of current storage system has a significant effect on the performance level of the port and can increase the loading and unloading norm up to 14%.Keywords: Simulation Modeling, Container Port, Marshaling Yard, Storage Policy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21056206 Spatial Analysis of Trees Composition, Diversity and Richnesss in the Built up Areas of University of Port Harcourt, Nigeria
Authors: O. S. Eludoyin, A. A. Aiyeloja, O. C. Ndife
Abstract:
The study investigated the spatial analysis of trees composition, diversity and richness in the built up area of University of Port Harcourt, Nigeria. Four quadrats of 25m x 25m size were laid randomly in each of the three parks and inventories of trees ≥10cm girth at breast height were taken and used to calculate the species composition, diversity and richness. Results showed that species composition and diversity in Abuja Park was the highest with 134 species and 0.866 respectively while the species richness was highest in Choba Park with a value of 2.496. The correlation between the size of park (spatial coverage) and species composition was 0.99 while the correlation between the size of the park and species diversity was 0.78. There was direct relationship between species composition and diversity while the relationship between species composition and species richness was inversely proportional. Rational use of these resources is encouraged.
Keywords: Built up area, composition, diversity, richness, spatial analysis, urban tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23566205 A Study on the Performance Characteristics of Variable Valve for Reverse Continuous Damper
Authors: Se Kyung Oh, Young Hwan Yoon, Ary Bachtiar Krishna
Abstract:
Nowadays, a passenger car suspension must has high performance criteria with light weight, low cost, and low energy consumption. Pilot controlled proportional valve is designed and analyzed to get small pressure change rate after blow-off, and to get a fast response of the damper, a reverse damping mechanism is adapted. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from the tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping forces can be tuned independently, of which the variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20 N, linearity, and variance of damping force. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through a real car test.Keywords: Blow-off, damping force, pilot controlledproportional valve, reverse continuous damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24446204 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems
Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr
Abstract:
Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.Keywords: Gas lift instability, bubble forming, bubble collapsing, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14766203 Computational Analysis of Cavity Effect over Aircraft Wing
Authors: P. Booma Devi, Dilip A. Shah
Abstract:
This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack.Keywords: Lift, square and rectangle dimples, enhancement of stall angle, cavity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18766202 Development of a New Piezoelectrically Actuated Micropump for Liquid and Gas
Authors: Chiang-Ho Cheng, An-Shik Yang, Chih-Jer Lin, Chun-Ying Lee
Abstract:
This paper aims to present the design, fabrication and test of a novel piezoelectric actuated, check-valves embedded micropump having the advantages of miniature size, light weight and low power consumption. This device is designed to pump gases and liquids with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump, the displacement of the piezoelectric actuator and the deformation of the check valve, simultaneously. The micropump with check valve 0.4 mm in thickness obtained higher output performance under the sinusoidal waveform of 120 Vpp. The micropump achieved the maximum pumping rates of 42.2 ml/min and back pressure of 14.0 kPa at the corresponding frequency of 28 and 20 Hz. The presented micropump is able to pump gases with a pumping rate of 196 ml/min at operating frequencies of 280 Hz under the sinusoidal waveform of 120 Vpp.
Keywords: Actuator, Check-valve, Micropump, Piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21926201 Self-Adaptive Differential Evolution Based Power Economic Dispatch of Generators with Valve-Point Effects and Multiple Fuel Options
Authors: R.Balamurugan, S.Subramanian
Abstract:
This paper presents the solution of power economic dispatch (PED) problem of generating units with valve point effects and multiple fuel options using Self-Adaptive Differential Evolution (SDE) algorithm. The global optimal solution by mathematical approaches becomes difficult for the realistic PED problem in power systems. The Differential Evolution (DE) algorithm is found to be a powerful evolutionary algorithm for global optimization in many real problems. In this paper the key parameters of control in DE algorithm such as the crossover constant CR and weight applied to random differential F are self-adapted. The PED problem formulation takes into consideration of nonsmooth fuel cost function due to valve point effects and multi fuel options of generator. The proposed approach has been examined and tested with the numerical results of PED problems with thirteen-generation units including valve-point effects, ten-generation units with multiple fuel options neglecting valve-point effects and ten-generation units including valve-point effects and multiple fuel options. The test results are promising and show the effectiveness of proposed approach for solving PED problems.Keywords: Multiple fuels, power economic dispatch, selfadaptivedifferential evolution and valve-point effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19006200 Optimal Design of Airfoil with High Aspect Ratio in Unmanned Aerial Vehicles
Authors: Kyoungwoo Park, Ji-Won Han, Hyo-Jae Lim, Byeong-Sam Kim, Juhee Lee
Abstract:
Shape optimization of the airfoil with high aspect ratio of long endurance unmanned aerial vehicle (UAV) is performed by the multi-objective optimization technology coupled with computational fluid dynamics (CFD). For predicting the aerodynamic characteristics around the airfoil the high-fidelity Navier-Stokes solver is employed and SMOGA (Simple Multi-Objective Genetic Algorithm), which is developed by authors, is used for solving the multi-objective optimization problem. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that is decided by airfoil shapes can be obtained.Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Lift-to-drag ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64416199 Numerical Simulation of Flow Past an Infinite Row of Equispaced Square Cylinders Using the Multi- Relaxation-Time Lattice Boltzmann Method
Authors: S. Ul. Islam, H. Rahman, W. S. Abbasi, N. Rathore
Abstract:
In this research numerical simulations are performed, using the multi-relaxation-time lattice Boltzmann method, in the range 3 ≤ β = w[d] ≤ 30 at Re = 100, 200 and 300, where β the blockage ratio, w is the equispaced distance between centers of cylinders, d is the diameter of the cylinder and Re is the Reynolds number, respectively. Special attention is paid to the effect of the equispaced distance between centers of cylinders. Visualization of the vorticity contour visualization are presented for some simulation showing the flow dynamics and patterns for blockage effect. Results show that the drag and mean drag coefficients, and Strouhal number, in general, decrease with the increase of β for fixed Re. It is found that the decreasing rate of drag and mean drag coefficients and Strouhal number is more distinct in the range 3 ≤ β ≤ 15. We found that when β > 15, the blockage effect almost diminishes. Our results further indicate that the drag and mean drag coefficients, peak value of the lift coefficient, root-mean-square value of the lift and drag coefficients and the ratio between lift and drag coefficients decrease with the increase of Re. The results indicate that symmetry boundary condition have more blockage effect as compared to periodic boundary condition.Keywords: Blockage ratio, Multi-relaxation-time lattice Boltzmann method, Square cylinder, Vortex formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20616198 A Black-Box Approach in Modeling Valve Stiction
Abstract:
Several valve stiction models have been proposed in the literature to help understand and study the behavior of sticky valves. In this paper, an alternative black-box modeling approach based on Neural Network (NN) is presented. It is shown that with proper network type and optimum model structures, the performance of the developed NN stiction model is comparable to other established method. The resulting NN model is also tested for its robustness against the uncertainty in the stiction parameter values. Predictive mode operation also shows excellent performance of the proposed model for multi-steps ahead prediction.
Keywords: Control valve stiction, neural network, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16106197 Exploiting Silicon-on-Insulator Microring Resonator Bistability Behavior for All Optical Set-Reset Flip-Flop
Authors: P. Nadimi, D. D. Caviglia, E. Di Zitti
Abstract:
We propose an all optical flip-flop circuit composedof two Silicon-on-insulator microring resonators coupled to straightwaveguides by exploiting the optical bistability behavior due to thenonlinear Kerr effect. We used the transfer matrix analysis toinvestigate continuous wave propagation through microrings, as wellwe considered the nonlinear switching characteristics of an opticaldevice using a double-coupler silicon ring resonator in presence ofthe Kerr nonlinearity, thus obtaining the bistability behavior of theoutput port, the drop port and also inside the silicon microringresonator. It is shown that the bistability behavior depends on thecontrol of the input wavelength.KeywordsAll optical flip-flops, Kerr effect, microringresonator, optical bistability.
Keywords: All optical flip-flops, Kerr effect, microring resonator, optical bistability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21486196 Half Model Testing for Canard of a Hybrid Buoyant Aircraft
Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S. Mohamed Ali
Abstract:
Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angle of attack. As a part of the validation of low fidelity tool, plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficients, the overall trend has under predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.Keywords: Wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26276195 Water Quality Assessment Based on Operational Indicator in West Coastal Water of Malaysia
Authors: Seyedeh Belin Tavakoly Sany, H. Rosli, R. Majid, S. Aishah
Abstract:
In this study, water monitoring was performed from Nov. 2012 to Oct. 2013 to assess water quality and evaluate the spatial and temporal distribution of physicochemical and biological variables in water. Water samples were collected from 10 coastal water stations of West Port. In the case of water-quality assessment, multi-metric indices and operational indicators have been proposed to classify the trophic status at different stations. The trophic level of West Port coastal water ranges from eutrophic to hypertrophic. Chl-a concentration was used to estimate the biological response of phytoplankton biomass and indicated eutrophic conditions in West Port and mesotrophic conditions at the control site. During the study period, no eutrophication events or secondary symptoms occurred, which may be related to hydrodynamic turbulence and water exchange, which prevent the development of eutrophic conditions in the West Port.Keywords: Water quality, multi-metric indices, operational indicator, Malaysia, West Port.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17876194 Optimal Design of Airfoil Platform Shapes with High Aspect Ratio Using Genetic Algorithm
Authors: Kyoungwoo Park, Byeong-Sam Kim
Abstract:
Unmanned aerial vehicles (UAVs) performing their operations for a long time have been attracting much attention in military and civil aviation industries for the past decade. The applicable field of UAV is changing from the military purpose only to the civil one. Because of their low operation cost, high reliability and the necessity of various application areas, numerous development programs have been initiated around the world. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that are decided by airfoil shapes can be obtained.Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19616193 The Clinical Use of Ahmed Valve Implant as an Aqueous Shunt for Control of Uveitic Glaucoma in Dogs
Authors: Khaled M. Ali, M. A. Abdel-Hamid, Ayman A. Mostafa
Abstract:
Objective: Safety and efficacy of Ahmed glaucoma valve implantation for the management of uveitis induced glaucoma evaluated on the five dogs with uncontrollable glaucoma. Materials and Methods: Ahmed Glaucoma Valve (AGV®; New World Medical, Rancho Cucamonga, CA, USA) is a flow restrictive, nonobstructive self-regulating valve system. Preoperative ocular evaluation included direct ophthalmoscopy and measurement of the intraocular pressure (IOP). The implant was examined and primed prior to implantation. The selected site of the valve implantation was the superior quadrant between the superior and lateral rectus muscles. A fornix-based incision was made through the conjunectiva and Tenon’s capsule. A pocket is formed by blunt dissection of Tenon’s capsule from the episclera. The body of the implant was inserted into the pocket with the leading edge of the device around 8-10 mm from the limbus. Results: No post-operative complications were detected in the operated eyes except a persistent corneal edema occupied the upper half of the cornea in one case. Hyphaema was very mild and seen only in two cases which resolved quickly two days after surgery. Endoscopical evaluation for the operated eyes revealed a normal ocular fundus with clearly visible optic papilla, tapetum and retinal blood vessels. No evidence of hemorrhage, infection, adhesions or retinal abnormalities was detected. Conclusion: Ahmed glaucoma valve is safe and effective implant for treatment of uveitic glaucoma in dogs.Keywords: Ahmed valve, endoscopy, glaucoma, ocular fundus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21436192 Simulation Modeling for Analysis and Evaluation of the Internal Handling Fleet System at Shahid Rajaee Container Port
Authors: Parham Azimi, Mohammad Reza Ghanbari
Abstract:
The dramatic increasing of sea-freight container transportations and the developing trends for using containers in the multimodal handling systems through the sea, rail, road and land in nowadays market cause general managers of container terminals to face challenges such as increasing demand, competitive situation, new investments and expansion of new activities and need to use new methods to fulfil effective operations both along quayside and within the yard. Among these issues, minimizing the turnaround time of vessels is considered to be the first aim of every container port system. Regarding the complex structure of container ports, this paper presents a simulation model that calculates the number of trucks needed in the Iranian Shahid Rajaee Container Port for handling containers between the berth and the yard. In this research, some important criteria such as vessel turnaround time, gantry crane utilization and truck utilization have been considered. By analyzing the results of the model, it has been shown that increasing the number of trucks to 66 units has a significant effect on the performance indices of the port and can increase the capacity of loading and unloading up to 10.8%.Keywords: Container Terminal, Gantry Crane Utilization, Simulation, Vessel Turnaround Time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18846191 Influence of Propeller Blade Lift Distribution on Whirl Flutter Stability Characteristics
Authors: J. Cecrdle
Abstract:
This paper deals with the whirl flutter of the turboprop aircraft structures. It is focused on the influence of the blade lift span-wise distribution on the whirl flutter stability. Firstly it gives the overall theoretical background of the whirl flutter phenomenon. After that the propeller blade forces solution and the options of the blade lift modeling are described. The problem is demonstrated on the example of a twin turboprop aircraft structure. There are evaluated the influences with respect to the propeller aerodynamic derivatives and finally the influences to the whirl flutter speed and the whirl flutter margin respectively.
Keywords: Aeroelasticity, flutter, propeller blade force, whirl flutter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23396190 Solving the Economic Dispatch Problem by Using Differential Evolution
Authors: S. Khamsawang, S. Jiriwibhakorn
Abstract:
This paper proposes an application of the differential evolution (DE) algorithm for solving the economic dispatch problem (ED). Furthermore, the regenerating population procedure added to the conventional DE in order to improve escaping the local minimum solution. To test performance of DE algorithm, three thermal generating units with valve-point loading effects is used for testing. Moreover, investigating the DE parameters is presented. The simulation results show that the DE algorithm, which had been adjusted parameters, is better convergent time than other optimization methods.Keywords: Differential evolution, Economic dispatch problem, Valve-point loading effect, Optimization method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16926189 The Effect of Canard Configurations to the Aerodynamics of the Blended Wing Body
Authors: Zurriati Mohd Ali, Wahyu Kuntjoro, Wirachman Wisnoe
Abstract:
The aerodynamics characteristics of a blended-wing body (BWB) aircraft were obtained in Universiti Teknologi MARA low speed wind tunnel. The scaled-down of BWB model consisted of a canard as its horizontal stabilizer. There were four canards with different aspect ratio used in the experiments. Canard setting angles were varied from -20q to 20q. All tests were conducted at velocity of 35 m/s, with Mach number 0.1. At low angles of attacks, the increment of lift slope for various canards aspect ratio is small and almost constant. Higher canard aspect ratio will cause higher drag. However, canard has a high effect to the moment at zero lift, CM,0.The visualization using mini tuff was performed to observe the airflow at the upper surface of canard. KeywordsAerodynamics,blended-wing body, canard, wind tunnel.Keywords: Aerodynamics, blended-wing body, canard, wind tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55236188 An Integrated Operational Research and System Dynamics Approach for Planning Decisions in Container Terminals
Authors: A. K. Abdel-Fattah, A. B. El-Tawil, N. A. Harraz
Abstract:
This paper focuses on the operational and strategic planning decisions related to the quayside of container terminals. We introduce an integrated operational research (OR) and system dynamics (SD) approach to solve the Berth Allocation Problem (BAP) and the Quay Crane Assignment Problem (QCAP). A BAP-QCAP optimization modeling approach which considers practical aspects not studied before in the integration of BAP and QCAP is discussed. A conceptual SD model is developed to determine the long-term effect of optimization on the system behavior factors like resource utilization, attractiveness to port, number of incoming vessels to port and port profits. The framework can be used for improving the operational efficiency of container terminals and providing a strategic view after applying optimization.
Keywords: Operational research, system dynamics, container terminal, quayside operational problems, strategic planning decisions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33266187 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift
Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard
Abstract:
Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66% and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.
Keywords: Floor lift, human robot interaction, admittance controller, variable admittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 636186 Characteristics of Hemodynamics in a Bileaflet Mechanical Heart Valve using an Implicit FSI Method
Authors: Tae-Hyub Hong, Choeng-Ryul Choi, Chang-Nyung Kim
Abstract:
Human heart valves diseased by congenital heart defects, rheumatic fever, bacterial infection, cancer may cause stenosis or insufficiency in the valves. Treatment may be with medication but often involves valve repair or replacement (insertion of an artificial heart valve). Bileaflet mechanical heart valves (BMHVs) are widely implanted to replace the diseased heart valves, but still suffer from complications such as hemolysis, platelet activation, tissue overgrowth and device failure. These complications are closely related to both flow characteristics through the valves and leaflet dynamics. In this study, the physiological flow interacting with the moving leaflets in a bileaflet mechanical heart valve (BMHV) is simulated with a strongly coupled implicit fluid-structure interaction (FSI) method which is newly organized based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (remeshing) of FLUENT. The simulated results are in good agreement with previous experimental studies. This study shows the applicability of the present FSI model to the complicated physics interacting between fluid flow and moving boundary.Keywords: Bileaflet Mechanical Heart Valve, Fluid- Structure Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20376185 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car
Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee
Abstract:
Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.
Keywords: Numerical study, computational fluid dynamics, air dam, tuning parts, drag, lift force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16396184 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow
Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani
Abstract:
Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.
Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25266183 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System
Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar
Abstract:
Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.Keywords: Common rail, hydrogen engine, port injection, wave propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593