Search results for: Boundary value problem; Multipoint equation boundary value problems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6583

Search results for: Boundary value problem; Multipoint equation boundary value problems

6553 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem

Authors: Mustafa Resa Becan

Abstract:

The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.

Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
6552 A Numerical Algorithm for Positive Solutions of Concave and Convex Elliptic Equation on R2

Authors: Hailong Zhu, Zhaoxiang Li

Abstract:

In this paper we investigate numerically positive solutions of the equation -Δu = λuq+up with Dirichlet boundary condition in a boundary domain ╬® for λ > 0 and 0 < q < 1 < p < 2*, we will compute and visualize the range of λ, this problem achieves a numerical solution.

Keywords: positive solutions, concave-convex, sub-super solution method, pseudo arclength method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
6551 Extended Cubic B-spline Interpolation Method Applied to Linear Two-Point Boundary Value Problems

Authors: Nur Nadiah Abd Hamid, Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

Linear two-point boundary value problem of order two is solved using extended cubic B-spline interpolation method. There is one free parameters, λ, that control the tension of the solution curve. For some λ, this method produced better results than cubic B-spline interpolation method.

Keywords: two-point boundary value problem, B-spline, extendedcubic B-spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
6550 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement

Authors: Maatoug Hassine, Mourad Hrizi

Abstract:

In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.

Keywords: Geometric inverse source problem, heat equation, topological sensitivity, topological optimization, Kohn-Vogelius formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
6549 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions

Authors: Khaled Moaddy

Abstract:

In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.

Keywords: Standard finite difference schemes, non–standard schemes, Laplace equation, Dirichlet boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
6548 The Symmetric Solutions for Boundary Value Problems of Second-Order Singular Differential Equation

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.

Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
6547 The Symmetric Solutions for Three-Point Singular Boundary Value Problems of Differential Equation

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.

Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
6546 A Modified Laplace Decomposition Algorithm Solution for Blasius’ Boundary Layer Equation of the Flat Plate in a Uniform Stream

Authors: M. A. Koroma, Z. Chuangyi, A. F., Kamara, A. M. H. Conteh

Abstract:

In this work, we apply the Modified Laplace decomposition algorithm in finding a numerical solution of Blasius’ boundary layer equation for the flat plate in a uniform stream. The series solution is found by first applying the Laplace transform to the differential equation and then decomposing the nonlinear term by the use of Adomian polynomials. The resulting series, which is exactly the same as that obtained by Weyl 1942a, was expressed as a rational function by the use of diagonal padé approximant.

Keywords: Modified Laplace decomposition algorithm, Boundary layer equation, Padé approximant, Numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
6545 Existence of Solutions for a Nonlinear Fractional Differential Equation with Integral Boundary Condition

Authors: Meng Hu, Lili Wang

Abstract:

This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form:  Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.

Keywords: Fractional differential equation, Integral boundary condition, Schauder fixed point theorem, Banach contraction principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
6544 An Alternative Proof for the NP-completeness of Top Right Access point-Minimum Length Corridor Problem

Authors: Priyadarsini P.L.K, Hemalatha T.

Abstract:

In the Top Right Access point Minimum Length Corridor (TRA-MLC) problem [1], a rectangular boundary partitioned into rectilinear polygons is given and the problem is to find a corridor of least total length and it must include the top right corner of the outer rectangular boundary. A corridor is a tree containing a set of line segments lying along the outer rectangular boundary and/or on the boundary of the rectilinear polygons. The corridor must contain at least one point from the boundaries of the outer rectangle and also the rectilinear polygons. Gutierrez and Gonzalez [1] proved that the MLC problem, along with some of its restricted versions and variants, are NP-complete. In this paper, we give a shorter proof of NP-Completeness of TRA-MLC by findig the reduction in the following way.

Keywords: NP-complete, 2-connected planar graph, Grid embedding of a plane graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
6543 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field

Authors: Saeed Sarabadan, Mehran Nikarya, Kouroah Parand

Abstract:

The magnetohydrodynamic (MHD) Falkner-Skan equations appear in study of laminar boundary layers flow over a wedge in presence of a transverse magnetic field. The partial differential equations of boundary layer problems in presence of a transverse magnetic field are reduced to MHD Falkner-Skan equation by similarity solution methods. This is a nonlinear ordinary differential equation. In this paper, we solve this equation via spectral collocation method based on Bessel functions of the first kind. In this approach, we reduce the solution of the nonlinear MHD Falkner-Skan equation to a solution of a nonlinear algebraic equations system. Then, the resulting system is solved by Newton method. We discuss obtained solution by studying the behavior of boundary layer flow in terms of skin friction, velocity, various amounts of magnetic field and angle of wedge. Finally, the results are compared with other methods mentioned in literature. We can conclude that the presented method has better accuracy than others.

Keywords: MHD Falkner-Skan, nonlinear ODE, spectral collocation method, Bessel functions, skin friction, velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
6542 Mixed Convection Boundary Layer Flow from a Vertical Cone in a Porous Medium Filled with a Nanofluid

Authors: Ezzah Liana Ahmad Fauzi, Syakila Ahmad, Ioan Pop

Abstract:

The steady mixed convection boundary layer flow from a vertical cone in a porous medium filled with a nanofluid is numerically investigated using different types of nanoparticles as Cu (copper), Al2O3 (alumina) and TiO2 (titania). The boundary value problem is solved by using the shooting technique by reducing it into an ordinary differential equation. Results of interest for the local Nusselt number with various values of the constant mixed convection parameter and nanoparticle volume fraction parameter are evaluated. It is found that dual solutions exist for a certain range of mixed convection parameter.

Keywords: boundary layer, mixed convection, nanofluid, porous medium, vertical cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
6541 Approximate Solution of Some Mixed Boundary Value Problems of the Generalized Theory of Couple-Stress Thermo-Elasticity

Authors: M. Chumburidze, D. Lekveishvili

Abstract:

We have considered the harmonic oscillations and general dynamic (pseudo oscillations) systems of theory generalized Green-Lindsay of couple-stress thermo-elasticity for isotropic, homogeneous elastic media. Approximate solution of some mixed boundary value problems for finite domain, bounded by the some closed surface are constructed.

Keywords: The couple-stress thermo-elasticity, boundary value problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
6540 Analyzing of Noise inside a Simple Vehicle Cabin using Boundary Element Method

Authors: A. Soltani, M. Karimi Demneh

Abstract:

In this paper, modeling of an acoustic enclosed vehicle cabin has been carried out by using boundary element method. Also, the second purpose of this study is analyzing of linear wave equation in an acoustic field. The resultants of this modeling consist of natural frequencies that have been compared with resultants derived from finite element method. By using numerical method (boundary element method) and after solution of wave equation inside an acoustic enclosed cabin, this method has been progressed to simulate noise inside a simple vehicle cabin.

Keywords: Boundary element method, natural frequency, noise, vehicle cabin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
6539 Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation with Integral Boundary Conditions

Authors: Chuanyun Gu

Abstract:

By using fixed point theorems for a class of generalized concave and convex operators, the positive solution of nonlinear fractional differential equation with integral boundary conditions is studied, where n ≥ 3 is an integer, μ is a parameter and 0 ≤ μ < α. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it. Finally, two examples are given to illustrate our results.

Keywords: Fractional differential equation, positive solution, existence and uniqueness, fixed point theorem, generalized concave and convex operator, integral boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
6538 Positive Solutions for Discrete Third-order Three-point Boundary Value Problem

Authors: Benshi Zhu

Abstract:

In this paper, the existence of multiple positive solutions for a class of third-order three-point discrete boundary value problem is studied by applying algebraic topology method.

Keywords: Positive solutions, Discrete boundary value problem, Third-order, Three-point, Algebraic topology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
6537 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract:

Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method is found to be good.

Keywords: Convective boundary, radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
6536 The Algorithm to Solve the Extend General Malfatti’s Problem in a Convex Circular Triangle

Authors: Ching-Shoei Chiang

Abstract:

The Malfatti’s problem solves the problem of fitting three circles into a right triangle such that these three circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides. This problem has been extended to any triangle (called general Malfatti’s problem). Furthermore, the problem has been extended to have 1 + 2 + … + n circles inside the triangle with special tangency properties among circles and triangle sides; it is called the extended general Malfatti’s problem. In the extended general Malfatti’s problem, call it Tri(Tn), where Tn is the triangle number, there are closed-form solutions for the Tri(T₁) (inscribed circle) problem and Tri(T₂) (3 Malfatti’s circles) problem. These problems become more complex when n is greater than 2. In solving the Tri(Tn) problem, n > 2, algorithms have been proposed to solve these problems numerically. With a similar idea, this paper proposed an algorithm to find the radii of circles with the same tangency properties. Instead of the boundary of the triangle being a straight line, we use a convex circular arc as the boundary and try to find Tn circles inside this convex circular triangle with the same tangency properties among circles and boundary as in Tri(Tn) problems. We call these problems the Carc(Tn) problems. The algorithm is a mO(Tn) algorithm, where m is the number of iterations in the loop. It takes less than 1000 iterations and less than 1 second for the Carc(T16) problem, which finds 136 circles inside a convex circular triangle with specified tangency properties. This algorithm gives a solution for circle packing problem inside convex circular triangle with arbitrarily-sized circles. Many applications concerning circle packing may come from the result of the algorithm, such as logo design, architecture design, etc.

Keywords: Circle packing, computer-aided geometric design, geometric constraint solver, Malfatti’s problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143
6535 The Design of Axisymmetric Ducts for Incompressible Flow with a Parabolic Axial Velocity Inlet Profile

Authors: V.Pavlika

Abstract:

In this paper a numerical algorithm is described for solving the boundary value problem associated with axisymmetric, inviscid, incompressible, rotational (and irrotational) flow in order to obtain duct wall shapes from prescribed wall velocity distributions. The governing equations are formulated in terms of the stream function ψ (x,y)and the function φ (x,y)as independent variables where for irrotational flow φ (x,y)can be recognized as the velocity potential function, for rotational flow φ (x,y)ceases being the velocity potential function but does remain orthogonal to the stream lines. A numerical method based on the finite difference scheme on a uniform mesh is employed. The technique described is capable of tackling the so-called inverse problem where the velocity wall distributions are prescribed from which the duct wall shape is calculated, as well as the direct problem where the velocity distribution on the duct walls are calculated from prescribed duct geometries. The two different cases as outlined in this paper are in fact boundary value problems with Neumann and Dirichlet boundary conditions respectively. Even though both approaches are discussed, only numerical results for the case of the Dirichlet boundary conditions are given. A downstream condition is prescribed such that cylindrical flow, that is flow which is independent of the axial coordinate, exists.

Keywords: Inverse problem, irrotational incompressible flow, Boundary value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
6534 Mechanical Quadrature Methods for Solving First Kind Boundary Integral Equations of Stationary Stokes Problem

Authors: Xin Luo, Jin Huang, Pan Cheng

Abstract:

By means of Sidi-Israeli’s quadrature rules, mechanical quadrature methods (MQMs) for solving the first kind boundary integral equations (BIEs) of steady state Stokes problem are presented. The convergence of numerical solutions by MQMs is proved based on Anselone’s collective compact and asymptotical compact theory, and the asymptotic expansions with the odd powers of the errors are provided, which implies that the accuracy of the approximations by MQMs possesses high accuracy order O (h3). Finally, the numerical examples show the efficiency of our methods.

Keywords: Stokes problem, boundary integral equation, mechanical quadrature methods, asymptotic expansions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
6533 Positive Solutions for a Class of Semipositone Discrete Boundary Value Problems with Two Parameters

Authors: Benshi Zhu

Abstract:

In this paper, the existence, multiplicity and noexistence of positive solutions for a class of semipositone discrete boundary value problems with two parameters is studied by applying nonsmooth critical point theory and sub-super solutions method.

Keywords: Discrete boundary value problems, nonsmoothcritical point theory, positive solutions, semipositone, sub-super solutions method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
6532 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation

Authors: Stephen Kirkup

Abstract:

This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.

Keywords: Boundary element method, laplace equation, vector calculus, simulation, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
6531 An Approximation Method for Exact Boundary Controllability of Euler-Bernoulli System

Authors: Abdelaziz Khernane, Naceur Khelil, Leila Djerou

Abstract:

The aim of this work is to study the numerical implementation of the Hilbert Uniqueness Method for the exact boundary controllability of Euler-Bernoulli beam equation. This study may be difficult. This will depend on the problem under consideration (geometry, control and dimension) and the numerical method used. Knowledge of the asymptotic behaviour of the control governing the system at time T may be useful for its calculation. This idea will be developed in this study. We have characterized as a first step, the solution by a minimization principle and proposed secondly a method for its resolution to approximate the control steering the considered system to rest at time T.

Keywords: Boundary control, exact controllability, finite difference methods, functional optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
6530 An Identification Method of Geological Boundary Using Elastic Waves

Authors: Masamitsu Chikaraishi, Mutsuto Kawahara

Abstract:

This paper focuses on a technique for identifying the geological boundary of the ground strata in front of a tunnel excavation site using the first order adjoint method based on the optimal control theory. The geological boundary is defined as the boundary which is different layers of elastic modulus. At tunnel excavations, it is important to presume the ground situation ahead of the cutting face beforehand. Excavating into weak strata or fault fracture zones may cause extension of the construction work and human suffering. A theory for determining the geological boundary of the ground in a numerical manner is investigated, employing excavating blasts and its vibration waves as the observation references. According to the optimal control theory, the performance function described by the square sum of the residuals between computed and observed velocities is minimized. The boundary layer is determined by minimizing the performance function. The elastic analysis governed by the Navier equation is carried out, assuming the ground as an elastic body with linear viscous damping. To identify the boundary, the gradient of the performance function with respect to the geological boundary can be calculated using the adjoint equation. The weighed gradient method is effectively applied to the minimization algorithm. To solve the governing and adjoint equations, the Galerkin finite element method and the average acceleration method are employed for the spatial and temporal discretizations, respectively. Based on the method presented in this paper, the different boundary of three strata can be identified. For the numerical studies, the Suemune tunnel excavation site is employed. At first, the blasting force is identified in order to perform the accuracy improvement of analysis. We identify the geological boundary after the estimation of blasting force. With this identification procedure, the numerical analysis results which almost correspond with the observation data were provided.

Keywords: Parameter identification, finite element method, average acceleration method, first order adjoint equation method, weighted gradient method, geological boundary, navier equation, optimal control theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
6529 On Problem of Parameters Identification of Dynamic Object

Authors: Kamil Aida-zade, C. Ardil

Abstract:

In this paper, some problem formulations of dynamic object parameters recovery described by non-autonomous system of ordinary differential equations with multipoint unshared edge conditions are investigated. Depending on the number of additional conditions the problem is reduced to an algebraic equations system or to a problem of quadratic programming. With this purpose the paper offers a new scheme of the edge conditions transfer method called by conditions shift. The method permits to get rid from differential links and multipoint unshared initially-edge conditions. The advantage of the proposed approach is concluded by capabilities of reduction of a parametric identification problem to essential simple problems of the solution of an algebraic system or quadratic programming.

Keywords: dynamic objects, ordinary differential equations, multipoint unshared edge conditions, quadratic programming, conditions shift

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
6528 Haar wavelet Method for Solving Initial and Boundary Value Problems of Bratu-type

Authors: S.G.Venkatesh, S.K.Ayyaswamy, G.Hariharan

Abstract:

In this paper, we present a framework to determine Haar solutions of Bratu-type equations that are widely applicable in fuel ignition of the combustion theory and heat transfer. The method is proposed by applying Haar series for the highest derivatives and integrate the series. Several examples are given to confirm the efficiency and the accuracy of the proposed algorithm. The results show that the proposed way is quite reasonable when compared to exact solution.

Keywords: Haar wavelet method, Bratu's problem, boundary value problems, initial value problems, adomain decomposition method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2965
6527 Recovering the Boundary Data in the Two Dimensional Inverse Heat Conduction Problem Using the Ritz-Galerkin Method

Authors: Saeed Sarabadan, Kamal Rashedi

Abstract:

This article presents a numerical method to find the heat flux in an inhomogeneous inverse heat conduction problem with linear boundary conditions and an extra specification at the terminal. The method is based upon applying the satisfier function along with the Ritz-Galerkin technique to reduce the approximate solution of the inverse problem to the solution of a system of algebraic equations. The instability of the problem is resolved by taking advantage of the Landweber’s iterations as an admissible regularization strategy. In computations, we find the stable and low-cost results which demonstrate the efficiency of the technique.

Keywords: Inverse problem, parabolic equations, heat equation, Ritz-Galerkin method, Landweber iterations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
6526 Cubic Trigonometric B-Spline Applied to Linear Two-Point Boundary Value Problems of Order Two

Authors: Nur Nadiah Abd Hamid , Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

Linear two-point boundary value problems of order two are solved using cubic trigonometric B-spline interpolation method (CTBIM). Cubic trigonometric B-spline is a piecewise function consisting of trigonometric equations. This method is tested on some problems and the results are compared with cubic B-spline interpolation method (CBIM) from the literature. CTBIM is found to approximate the solution slightly more accurately than CBIM if the problems are trigonometric.

Keywords: trigonometric B-spline, two-point boundary valueproblem, spline interpolation, cubic spline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577
6525 Optimal Control of a Linear Distributed Parameter System via Shifted Legendre Polynomials

Authors: Sanjeeb Kumar Kar

Abstract:

The optimal control problem of a linear distributed parameter system is studied via shifted Legendre polynomials (SLPs) in this paper. The partial differential equation, representing the linear distributed parameter system, is decomposed into an n - set of ordinary differential equations, the optimal control problem is transformed into a two-point boundary value problem, and the twopoint boundary value problem is reduced to an initial value problem by using SLPs. A recursive algorithm for evaluating optimal control input and output trajectory is developed. The proposed algorithm is computationally simple. An illustrative example is given to show the simplicity of the proposed approach.

Keywords: Optimal control, linear systems, distributed parametersystems, Legendre polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
6524 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method

Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi

Abstract:

In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.

Keywords: Boundary conditions, buckling, non-local, the differential transform method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961