Search results for: Acoustic emission monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1500

Search results for: Acoustic emission monitoring

1470 Quantum Ion Acoustic Solitary and Shock Waves in Dissipative Warm Plasma with Fermi Electron and Positron

Authors: Hamid Reza Pakzad

Abstract:

Ion-acoustic solitary and shock waves in dense quantum plasmas whose constituents are electrons, positrons, and positive ions are investigated. We assume that ion velocity is weakly relativistic and also the effects of kinematic viscosity among the plasma constituents is considered. By using the reductive perturbation method, the Korteweg–deVries–Burger (KdV-B) equation is derived.

Keywords: Ion acoustic shock waves; Quantum plasmas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1469 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: Acoustic sensor, diaphragm based, lumped element modeling, natural frequency, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977
1468 Nonplanar Ion-acoustic Waves in a Relativistically Degenerate Quantum Plasma

Authors: Swarniv Chandra, Sibarjun Das, Agniv Chandra, Basudev Ghosh, Apratim Jash

Abstract:

Using the quantum hydrodynamic (QHD) model the nonlinear properties of ion-acoustic waves in are lativistically degenerate quantum plasma is investigated by deriving a nonlinear Spherical Kadomtsev–Petviashvili (SKP) equation using the standard reductive perturbation method equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of ion-acoustic waves in quantum plasma.

Keywords: Kadomtsev-Petviashvili equation, Ion-acoustic Waves, Relativistic Degeneracy, Quantum Plasma, Quantum Hydrodynamic Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1467 Comparison of Fricative Vocal Tract Transfer Functions Derived using Two Different Segmentation Techniques

Authors: K. S. Subari, C. H. Shadle, A. Barney, R. I. Damper

Abstract:

The acoustic and articulatory properties of fricative speech sounds are being studied using magnetic resonance imaging (MRI) and acoustic recordings from a single subject. Area functions were derived from a complete set of axial and coronal MR slices using two different methods: the Mermelstein technique and the Blum transform. Area functions derived from the two techniques were shown to differ significantly in some cases. Such differences will lead to different acoustic predictions and it is important to know which is the more accurate. The vocal tract acoustic transfer function (VTTF) was derived from these area functions for each fricative and compared with measured speech signals for the same fricative and same subject. The VTTFs for /f/ in two vowel contexts and the corresponding acoustic spectra are derived here; the Blum transform appears to show a better match between prediction and measurement than the Mermelstein technique.

Keywords: Area functions, fricatives, vocal tract transferfunction, MRI, speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
1466 Ant System with Acoustic Communication

Authors: S. Bougrine, S. Ouchraa, B. Ahiod, A. A. El Imrani

Abstract:

Ant colony optimization is an ant algorithm framework that took inspiration from foraging behavior of ant colonies. Indeed, ACO algorithms use a chemical communication, represented by pheromone trails, to build good solutions. However, ants involve different communication channels to interact. Thus, this paper introduces the acoustic communication between ants while they are foraging. This process allows fine and local exploration of search space and permits optimal solution to be improved.

Keywords: Acoustic Communication, Ant Colony Optimization, Local Search, Traveling Salesman Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
1465 Theoretical Analysis of Damping Due to Air Viscosity in Narrow Acoustic Tubes

Authors: M. Watanabe, T. Yamaguchi, M. Sasajima, Y. Kurosawa, Y. Koike

Abstract:

Headphones and earphones have many extremely small holes or narrow slits; they use sound-absorbing or porous material (i.e., dampers) to suppress vibratory system resonance. The air viscosity in these acoustic paths greatly affects the acoustic properties. Simulation analyses such as the finite element method (FEM) therefore require knowledge of the material properties of sound-absorbing or porous materials, such as the characteristic impedance and propagation constant. The transfer function method using acoustic tubes is a widely known measuring method, but there is no literature on taking measurements up to the audible range. To measure the acoustic properties at high-range frequencies, the acoustic tubes that form the measuring device need to be narrowed, and the distance between the two microphones needs to be reduced. However, when the tubes are narrowed, the characteristic impedance drops below the air impedance. In this study, we considered the effect of air viscosity in an acoustical tube, introduced a theoretical formula for this effect in the form of complex density and complex sonic velocity, and verified the theoretical formula. We also conducted an experiment and observed the effect from air viscosity in the actual measurements.

Keywords: acoustic tube, air viscosity, earphones, FEM, porous material, sound-absorbing material, transfer function method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
1464 Propagation of Electron-Acoustic Solitary Waves in Weakly Relativistically Degenerate Fermi Plasma

Authors: Swarniv Chandra, Basudev Ghosh, S. N. Paul

Abstract:

Using one dimensional Quantum hydrodynamic (QHD) model Korteweg de Vries (KdV) solitary excitations of electron-acoustic waves (EAWs) have been examined in twoelectron- populated relativistically degenerate super dense plasma. It is found that relativistic degeneracy parameter influences the conditions of formation and properties of solitary structures.

Keywords: Relativistic Degeneracy, Electron-Acoustic Waves, Quantum Plasma, KdV Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
1463 Finite Element and Subspace Identification Approaches to Model Development of a Smart Acoustic Box with Experimental Verification

Authors: Tamara Nestorović, Jean Lefèvre, Stefan Ringwelski, Ulrich Gabbert

Abstract:

Two approaches for model development of a smart acoustic box are suggested in this paper: the finite element (FE) approach and the subspace identification. Both approaches result in a state-space model, which can be used for obtaining the frequency responses and for the controller design. In order to validate the developed FE model and to perform the subspace identification, an experimental set-up with the acoustic box and dSPACE system was used. Experimentally obtained frequency responses show good agreement with the frequency responses obtained from the FE model and from the identified model.

Keywords: Acoustic box, experimental verification, finite element model, subspace identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
1462 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator

Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam

Abstract:

This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.

Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
1461 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells

Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari

Abstract:

Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.

Keywords: Ultrasound, mechanical index, modeling, stem cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
1460 Mathematical Model of the Respiratory System – Comparison of the Total Lung Impedance in the Adult and Neonatal Lung

Authors: M. Rozanek, K. Roubik

Abstract:

A mathematical model of the respiratory system is introduced in this study. Geometrical dimensions of the respiratory system were used to compute the acoustic properties of the respiratory system using the electro-acoustic analogy. The effect of the geometrical proportions of the respiratory system is observed in the paper.

Keywords: Electro-acoustic analogy, total lung impedance, mechanical parameters, respiratory system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
1459 Evaluation of the Acoustic Performance of Classrooms in Algerian Teaching Schools

Authors: Bouttout Abdelouahab, Amara Mohamed, Djakabe Saad, Remram Youcef

Abstract:

This paper presents the results of an evaluation of acoustic comfort such as background noise and reverberation time in teaching rooms in Height National School of Civil Engineering, Algeria. Four teaching rooms are evaluated: conference room, two classroom and amphitheatre. The acoustic quality of the classrooms has been analyzed based on measurements of sound pressure level inside room and reverberations time. The measurement results show that impulse decays dependent on the position of the microphone inside room and the background noise is with agreement of National Official Journal of Algeria published in July 1993. Therefore there exists a discrepancy between the obtained reverberation time value and recommended reverberation time in some classrooms. Three methods have been proposed to reduce the reverberation time values in such room. We developed a program with FORTRAN 6.0 language based on the absorption acoustic values of the Technical Document Regulation (DTR C3.1.1). The important results of this paper can be used to regulate the construction and execute the acoustic rehabilitations of teaching room in Algeria, especially the classrooms of the pupils in primary and secondary schools.

Keywords: Room acoustic, reverberation time, background noise, absorptions materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660
1458 Analysis of Wave Propagation in Two-dimensional Phononic Crystals with Hollow Cylinders

Authors: Zi-Gui Huang, Tsung-Tsong Wu

Abstract:

Large full frequency band gaps of surface and bulk acoustic waves in two-dimensional phononic band structures with hollow cylinders are addressed in this paper. It is well-known that absolute frequency band gaps are difficultly obtained in a band structure consisted of low-acoustic-impedance cylinders in high-acoustic-impedance host materials such as PMMA/Ni band structures. Phononic band structures with hollow cylinders are analyzed and discussed to obtain large full frequency band gaps not only for bulk modes but also for surface modes. The tendency of absolute frequency band gaps of surface and bulk acoustic waves is also addressed by changing the inner radius of hollow cylinders in this paper. The technique and this kind of band structure are useful for tuning the frequency band gaps and the design of acoustic waveguides.

Keywords: Phononic crystals, Band gap, SAW, BAW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
1457 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications

Authors: R. Kanmaniraja, R. Freshipali, J. Abdullah, K. Niranjan, K. Balasubramani, V. R. Sanal Kumar

Abstract:

The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization.

Keywords: Supersonic nozzle, Chevron, Acoustic level, Shape Optimization of Chevron Nozzles, Jet noise suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3775
1456 Estimating 3D-Position of A Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals

Authors: Katsumi Hirata

Abstract:

To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.

Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
1455 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: Terrain classification, acoustic features, autonomous robots, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
1454 Arbitrary Amplitude Ion-Acoustic Solitary Waves in Electron-Ion-Positron Plasma with Nonthermal Electrons

Authors: Basudev Ghosh, Sreyasi Banerjee

Abstract:

Using pseudo potential method arbitrary amplitude ion-acoustic solitary waves have been theoretically studied in a collisionless plasma consisting of warm drifting positive ions, Boltzmann positrons and nonthermal electrons. Ion-acoustic solitary wave solutions have been obtained and the dependence of the solitary wave profile on different plasma parameters has been studied numerically. Lower and higher order compressive and rarefactive solitary waves are observed in presence of positrons, nonthermal electrons, ion drift velocity and finite ion temperature. Inclusion of higher order nonlinearity is shown to have significant correction to the solitary wave profile for the same values of plasma parameters.

Keywords: Ion-acoustic waves, Nonthermal electrons, Sagdeev potential, Solitary waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
1453 Milling Chatter Prevention by Adaptive Spindle Speed Tuning

Authors: Nan-Chyuan Tsai, Din-Chang Chen, Rong-Mao Lee, Bai-Lu Wang

Abstract:

This paper presents how the real-time chatter prevention can be realized by feedback of acoustic cutting signal, and the efficacy of the proposed adaptive spindle speed tuning algorithm is verified by intensive experimental simulations. A pair of microphones, perpendicular to each other, is used to acquire the acoustic cutting signal resulting from milling chatter. A real-time feedback control loop is constructed for spindle speed compensation so that the milling process can be ensured to be within the stability zone of stability lobe diagram. Acoustic Chatter Signal Index (ACSI) and Spindle Speed Compensation Strategy (SSCS) are proposed to quantify the acoustic signal and actively tune the spindle speed respectively. By converting the acoustic feedback signal into ACSI, an appropriate Spindle Speed Compensation Rate (SSCR) can be determined by SSCS based on real-time chatter level or ACSI. Accordingly, the compensation command, referred to as Added-On Voltage (AOV), is applied to increase/decrease the spindle motor speed. By inspection on the precision and quality of the workpiece surface after milling, the efficacy of the real-time chatter prevention strategy via acoustic signal feedback is further assured.

Keywords: Chatter compensation, Stability lobes, Non-invasivemeasurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
1452 Estimation of Methane from Hydrocarbon Exploration and Production in India

Authors: A. K. Pathak, K. Ojha

Abstract:

Methane is the second most important greenhouse gas (GHG) after carbon dioxide. Amount of methane emission from energy sector is increasing day by day with various activities. In present work, various sources of methane emission from upstream, middle stream and downstream of oil & gas sectors are identified and categorised as per IPCC-2006 guidelines. Data were collected from various oil & gas sector like (i) exploration & production of oil & gas (ii) supply through pipelines (iii) refinery throughput & production (iv) storage & transportation (v) usage. Methane emission factors for various categories were determined applying Tier-II and Tier-I approach using the collected data. Total methane emission from Indian Oil & Gas sectors was thus estimated for the year 1990 to 2007.

Keywords: Carbon credit, Climate change, Methane emission, Oil & Gas production

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
1451 Emission Constrained Economic Dispatch for Hydrothermal Coordination

Authors: Md. Sayeed Salam

Abstract:

This paper presents an efficient emission constrained economic dispatch algorithm that deals with nonlinear cost function and constraints. It is then incorporated into the dynamic programming based hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

Keywords: Emission constraint, Hydrothermal coordination, and Economic dispatch algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
1450 Emission Constrained Hydrothermal Scheduling Algorithm

Authors: Sayeed Salam

Abstract:

This paper presents an efficient emission constrained hydrothermal scheduling algorithm that deals with nonlinear functions such as the water discharge characteristics, thermal cost, and transmission loss. It is then incorporated into the hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

Keywords: Emission constraint, Hydrothermal coordination, and Hydrothermal scheduling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
1449 Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities

Authors: M. Mourad, K. Mahmoud

Abstract:

Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO2 emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle.

Keywords: Electrification strategy, hybrid electric vehicle, CO2 emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
1448 Nonlinear Acoustic Echo Cancellation Using Volterra Filtering with a Variable Step-Size GS-PAP Algorithm

Authors: J. B. Seo, K. J. Kim, S. W. Nam

Abstract:

In this paper, a nonlinear acoustic echo cancellation (AEC) system is proposed, whereby 3rd order Volterra filtering is utilized along with a variable step-size Gauss-Seidel pseudo affine projection (VSSGS-PAP) algorithm. In particular, the proposed nonlinear AEC system is developed by considering a double-talk situation with near-end signal variation. Simulation results demonstrate that the proposed approach yields better nonlinear AEC performance than conventional approaches.

Keywords: Acoustic echo cancellation (AEC), Volterra filtering, variable step-size, GS-PAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
1447 Developing Emission Factors of Fugitive Particulate Matter Emissions for Construction Sites in the Middle East Area

Authors: Hala A. Hassan, Vasiliki K. Tsiouri, Konstantinos E. Konstantinos

Abstract:

Fugitive particulate matter (PM) is a major source of airborne pollution in the Middle East countries. The meteorological conditions and topography of the area makes it highly susceptible to wind-blown particles which raise many air quality concerns. Air quality tools such as field monitoring, emission factors and dispersion modeling have been used in previous research studies to analyze the release and impacts of fugitive PM in the region. However, these tools have been originally developed based on experiments made for European and North American regions. In this work, an experimental campaign was conducted on April-May 2014 in a construction site in Doha city, Qatar. The ultimate goal is to evaluate the applicability of the existing emission factors for construction sites in dry and arid areas like the Middle East.

Keywords: Air pollution, construction, emissions, middle east, fugitive particulate matter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3314
1446 TACS : Thermo Acoustic Cooling System

Authors: Z. Zarid, C. Gamba, A. Brusseaux, C. Laborie, K. Briens

Abstract:

Cooling with sound is a physical phenomenon allowed by Thermo-Acoustics in which acoustic energy is transformed into a negative heat transfer, in other words: into cooling! Without needing any harmful gas, the transformation is environmentally friendly and can respond to many needs in terms of air conditioning, food refrigeration for domestic use, and cooling medical samples for example. To explore the possibilities of this cooling solution on a small scale, the TACS prototype has been designed, consisting of a low cost thermoacoustic refrigerant “pipe” able to lower the temperature by a few degrees. The obtained results are providing an interesting element for possible future of thermo-acoustic refrigeration.

Keywords: Domestic Scale Cooling System, Thermoacoustic, Environmental Friendly Refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
1445 CFD Modeling of Reduction in NOX Emission Using HiTAC Technique

Authors: Abbas Khoshhal, Masoud Rahimi, Sayed Reza Shabanian, Ammar Abdulaziz Alsairafi

Abstract:

In the present study, the rate of NOx emission in a combustion chamber working in conventional combustion and High Temperature Air Combustion (HiTAC) system are examined using CFD modeling. The effect of peak temperature, combustion air temperature and oxygen concentration on NOx emission rate was undertaken. Results show that in a fixed oxygen concentration, increasing the preheated air temperature will increase the peak temperature and NOx emission rate. In addition, it was observed that the reduction of the oxygen concentration in the fixed preheated air temperature decreases the peak temperature and NOx emission rate. On the other hand, the results show that increase of preheated air temperature at various oxygen concentrations increases the NOx emission rate. However, the rate of increase in HiTAC conditions is quite lower than the conventional combustion. The modeling results show that the NOx emission rate in HiTAC combustion is 133% less than that of the conventional combustion.

Keywords: CFD Modeling, HiTAC, NOx, Combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
1444 Event Monitoring Based On Web Services for Heterogeneous Event Sources

Authors: Arne Koschel

Abstract:

This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.

Keywords: Event monitoring, ECA, CEP, SOA, Web services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
1443 Performance Evaluation of Acoustic-Spectrographic Voice Identification Method in Native and Non-Native Speech

Authors: E. Krasnova, E. Bulgakova, V. Shchemelinin

Abstract:

The paper deals with acoustic-spectrographic voice identification method in terms of its performance in non-native language speech. Performance evaluation is conducted by comparing the result of the analysis of recordings containing native language speech with recordings that contain foreign language speech. Our research is based on Tajik and Russian speech of Tajik native speakers due to the character of the criminal situation with drug trafficking. We propose a pilot experiment that represents a primary attempt enter the field.

Keywords: Speaker identification, acoustic-spectrographic method, non-native speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
1442 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: Wetting, acoustic reflectometry, gigahertz, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
1441 Microscopic Emission and Fuel Consumption Modeling for Light-duty Vehicles Using Portable Emission Measurement System Data

Authors: Wei Lei, Hui Chen, Lin Lu

Abstract:

Microscopic emission and fuel consumption models have been widely recognized as an effective method to quantify real traffic emission and energy consumption when they are applied with microscopic traffic simulation models. This paper presents a framework for developing the Microscopic Emission (HC, CO, NOx, and CO2) and Fuel consumption (MEF) models for light-duty vehicles. The variable of composite acceleration is introduced into the MEF model with the purpose of capturing the effects of historical accelerations interacting with current speed on emission and fuel consumption. The MEF model is calibrated by multivariate least-squares method for two types of light-duty vehicle using on-board data collected in Beijing, China by a Portable Emission Measurement System (PEMS). The instantaneous validation results shows the MEF model performs better with lower Mean Absolute Percentage Error (MAPE) compared to other two models. Moreover, the aggregate validation results tells the MEF model produces reasonable estimations compared to actual measurements with prediction errors within 12%, 10%, 19%, and 9% for HC, CO, NOx emissions and fuel consumption, respectively.

Keywords: Emission, Fuel consumption, Light-duty vehicle, Microscopic, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954